Enumeration Reducibility and Computable Structure Theory

[1]  Joseph S. Miller,et al.  Defining totality in the enumeration degrees , 2015 .

[2]  H. Ganchev,et al.  Definability via Kalimullin pairs in the structure of the enumeration degrees , 2014 .

[3]  Ivan N. Soskov Effective properties of Marker's extensions , 2013, J. Log. Comput..

[4]  Ivan N. Soskov,et al.  Quasi-minimal degrees for degree spectra , 2013, J. Log. Comput..

[5]  Ivan N. Soskov A Note on ω-Jump Inversion of Degree Spectra of Structures , 2013, CiE.

[6]  Stefan Vatev,et al.  Another Jump Inversion Theorem for Structures , 2013, CiE.

[7]  Mariya Ivanova Soskova,et al.  Interpreting true arithmetic in the local structure of the enumeration degrees , 2012, The Journal of Symbolic Logic.

[8]  Ivan N. Soskov,et al.  Embedding countable partial orderings in the enumeration degrees and the ω-enumeration degrees , 2012, J. Log. Comput..

[9]  Antonio Montalbán,et al.  Rice sequences of relations , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Antonio Montalbán,et al.  ON THE n-BACK-AND-FORTH TYPES OF BOOLEAN ALGEBRAS , 2012 .

[11]  Theodore A. Slaman,et al.  Relative to any non-Hyperarithmetic Set , 2011, J. Math. Log..

[12]  Stefan Vatev,et al.  Conservative Extensions of Abstract Structures , 2011, CiE.

[13]  A. Stukachev,et al.  A jump inversion theorem for the semilattices of sigma-degrees , 2010 .

[14]  Antonio Montalbán,et al.  Notes on the Jump of a Structure , 2009, CiE.

[15]  Hristo Ganchev,et al.  Definability in the Local Theory of the omega-Enumeration Degrees , 2009, CiE.

[16]  S. Barry Cooper,et al.  Computability In Context: Computation and Logic in the Real World , 2009 .

[17]  Iskander Sh. Kalimullin,et al.  Enumeration Degrees and Enumerability of Familes , 2009, J. Log. Comput..

[18]  Alexandra A. Soskova omega-Degree Spectra , 2008, CiE.

[19]  Iskander Sh. Kalimullin,et al.  Some Notes on Degree Spectra of the Structures , 2007, CiE.

[20]  Alexandra A. Soskova A Jump Inversion Theorem for the Degree Spectra , 2007, CiE.

[21]  Ivan N. Soskov,et al.  Uniform regular enumerations , 2006, Mathematical Structures in Computer Science.

[22]  Alexandra A. Soskova Relativized Degree Spectra , 2006, J. Log. Comput..

[23]  V. Baleva,et al.  The jump operation for structure degrees , 2006, Arch. Math. Log..

[24]  Andrea Sorbi,et al.  On Extensions of Embeddings into the Enumeration Degrees of the -Sets , 2005, J. Math. Log..

[25]  Julia F. Knight,et al.  Enumerations in computable structure theory , 2005, Ann. Pure Appl. Log..

[26]  Alexandra A. Soskova Minimal Pairs and Quasi-minimal Degrees for the Joint Spectra of Structures , 2005, CiE.

[27]  Bakhadyr Khoussainov,et al.  Complexity of Categorical Theories with Computable Models , 2004 .

[28]  Ivan N. Soskov Degree Spectra and Co-Spectra of Structures , 2003 .

[29]  Gordon Plotkin,et al.  A Set-Theoretical Definition of Application , 2003 .

[30]  Ivan N. Soskov,et al.  Regular enumerations , 2002, Journal of Symbolic Logic.

[31]  Theodore A. Slaman,et al.  Every Set has a Least Jump Enumeration , 2000 .

[32]  Ivan N. Soskov A jump inversion theorem for the enumeration jump , 2000, Arch. Math. Log..

[33]  Gerald E. Sacks,et al.  FORCING WITH PERFECT CLOSED SETS , 1999 .

[34]  A. Sorbi,et al.  Quasi-minimal enumeration degrees and minimal Turing degrees , 1998 .

[35]  I︠U︡riĭ Leonidovich Ershov Definability and Computability , 1996 .

[36]  Christopher J. Ash,et al.  Generalizations of Enumeration Reducibility Using Recursive Infinitary Propositional Sentences , 1992, Ann. Pure Appl. Log..

[37]  Rodney G. Downey,et al.  Orderings with th jump degree 0 , 1992 .

[38]  Ivan N. Soskov Computability by means of effectively definable schemes and definability via enumerations , 1990, Arch. Math. Log..

[39]  John Chisholm,et al.  Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.

[40]  David Marker,et al.  Non Σn axiomatizable almost strongly minimal theories , 1989, Journal of Symbolic Logic.

[41]  Ivan N. Soskov Definability via enumerations , 1989, Journal of Symbolic Logic.

[42]  Julia F. Knight,et al.  Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..

[43]  Julia F. Knight,et al.  Degrees coded in jumps of orderings , 1986, Journal of Symbolic Logic.

[44]  Kevin McEvoy,et al.  Jumps of quasi-minimal enumeration degrees , 1985, Journal of Symbolic Logic.

[45]  S. Barry Cooper,et al.  Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense , 1984, Journal of Symbolic Logic.

[46]  Linda Jean Richter Degrees of Structures , 1981, Journal of Symbolic Logic.

[47]  Yiannis N. Moschovakis,et al.  Elementary induction on abstract structures , 1974 .

[48]  John Case,et al.  Enumeration reducibility and partial degrees , 1971 .

[49]  Hilary Putnam,et al.  A note on the hyperarithmetical hierarchy , 1970, Journal of Symbolic Logic.

[50]  Yiannis N. Moschovakis,et al.  Abstract Computability and Invariant Definability , 1970, Journal of Symbolic Logic.

[51]  Yiannis N. Moschovakis,et al.  Abstract first order computability. II , 1969 .

[52]  C. Jockusch Semirecursive sets and positive reducibility , 1968 .

[53]  G. Sacks,et al.  Metarecursive sets , 1965, Journal of Symbolic Logic.

[54]  J. Myhill Note on degrees of partial functions , 1961 .

[55]  Joseph R. Shoenfield,et al.  Degrees of models , 1960, Journal of Symbolic Logic.

[56]  Peter Koepke,et al.  Ash's theorem for abstract structures , 2016 .

[57]  Joel David Hamkins,et al.  Effective model theory: approach via σ-definability , 2013 .

[58]  Mariya Ivanova Soskova,et al.  Kalimullin Pairs of §02 w-Enumeration Degrees , 2011, Int. J. Softw. Informatics.

[59]  Hristo Ganchev Definability in the local theory of the ω-enumeration degrees , 2009 .

[60]  H. Ganchev,et al.  The high / low hierarchy in the local structure of the ω-enumeration degrees , 2009 .

[61]  Antonio Montalb An,et al.  NOTES ON THE JUMP OF A STRUCTURES , 2009 .

[62]  Mariya Ivanova Soskova,et al.  EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE ENUMERATION DEGREES AND THE ω-ENUMERATION DEGREES , 2009 .

[63]  Ivan N. Soskov THE JUMP OPERATOR ON THE ω-ENUMERATION DEGREES , 2008 .

[64]  Hristo Ganchev Exact Pair Theorem for the ω-Enumeration Degrees , 2007 .

[65]  Ivan N. Soskov THE ω-ENUMERATION DEGREES , 2007 .

[66]  Luigi Acerbi,et al.  Computation and Logic in the Real World , 2007, Lecture Notes in Computer Science.

[67]  Ivan N. Soskov CONSTRUCTING MINIMAL PAIRS OF DEGREES , 2006 .

[68]  Hristo Ganchev A Total Degree Splitting Theorem and a Jump Inversion Splitting Theorem , 2005 .

[69]  S. Cooper,et al.  Splitting Properties of Total Enumeration Degrees , 2003 .

[70]  V. Boutchkova Genericity in Abstract Structure Degrees , 2002 .

[71]  Julia A. Knight,et al.  Computable structures and the hyperarithmetical hierarchy , 2000 .

[72]  Stephan Wehner,et al.  Enumerations, countable structures and Turing degrees , 1998 .

[73]  Theodore A. Slaman,et al.  Relative to any nonrecursive set , 1998 .

[74]  J. Knight,et al.  Chapter 7 Degrees of models , 1998 .

[75]  Dimitŭr Genchev Skordev Computability in combinatory spaces , 1992 .

[76]  Linda Jean Richter,et al.  Degrees of Unsolvability of Models , 1977 .

[77]  J. C. Shepherdson,et al.  Computation Over Abstract Structures: Serial and Parallel Procedures and Friedman's Effective Definitional Schemes , 1975 .

[78]  Jon Barwise,et al.  Admissible sets and structures , 1975 .

[79]  L. Goddard Enumeration , 1972, Nature.

[80]  Georg Kreisel,et al.  Some Reasons for Generalizing Recursion Theory , 1971 .

[81]  Alan L. Selman,et al.  Arithmetical Reducibilities I , 1971 .

[82]  Harvey M. Friedman,et al.  Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory , 1971 .

[83]  Richard Montague,et al.  Recursion Theory as a Branch of Model Theory1 , 1968 .

[84]  R. Platek Foundations of recursion theory , 1966 .

[85]  H. Rogers,et al.  Reducibility and Completeness for Sets of Integers , 1959 .