Enumeration Reducibility and Computable Structure Theory
暂无分享,去创建一个
[1] Joseph S. Miller,et al. Defining totality in the enumeration degrees , 2015 .
[2] H. Ganchev,et al. Definability via Kalimullin pairs in the structure of the enumeration degrees , 2014 .
[3] Ivan N. Soskov. Effective properties of Marker's extensions , 2013, J. Log. Comput..
[4] Ivan N. Soskov,et al. Quasi-minimal degrees for degree spectra , 2013, J. Log. Comput..
[5] Ivan N. Soskov. A Note on ω-Jump Inversion of Degree Spectra of Structures , 2013, CiE.
[6] Stefan Vatev,et al. Another Jump Inversion Theorem for Structures , 2013, CiE.
[7] Mariya Ivanova Soskova,et al. Interpreting true arithmetic in the local structure of the enumeration degrees , 2012, The Journal of Symbolic Logic.
[8] Ivan N. Soskov,et al. Embedding countable partial orderings in the enumeration degrees and the ω-enumeration degrees , 2012, J. Log. Comput..
[9] Antonio Montalbán,et al. Rice sequences of relations , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[10] Antonio Montalbán,et al. ON THE n-BACK-AND-FORTH TYPES OF BOOLEAN ALGEBRAS , 2012 .
[11] Theodore A. Slaman,et al. Relative to any non-Hyperarithmetic Set , 2011, J. Math. Log..
[12] Stefan Vatev,et al. Conservative Extensions of Abstract Structures , 2011, CiE.
[13] A. Stukachev,et al. A jump inversion theorem for the semilattices of sigma-degrees , 2010 .
[14] Antonio Montalbán,et al. Notes on the Jump of a Structure , 2009, CiE.
[15] Hristo Ganchev,et al. Definability in the Local Theory of the omega-Enumeration Degrees , 2009, CiE.
[16] S. Barry Cooper,et al. Computability In Context: Computation and Logic in the Real World , 2009 .
[17] Iskander Sh. Kalimullin,et al. Enumeration Degrees and Enumerability of Familes , 2009, J. Log. Comput..
[18] Alexandra A. Soskova. omega-Degree Spectra , 2008, CiE.
[19] Iskander Sh. Kalimullin,et al. Some Notes on Degree Spectra of the Structures , 2007, CiE.
[20] Alexandra A. Soskova. A Jump Inversion Theorem for the Degree Spectra , 2007, CiE.
[21] Ivan N. Soskov,et al. Uniform regular enumerations , 2006, Mathematical Structures in Computer Science.
[22] Alexandra A. Soskova. Relativized Degree Spectra , 2006, J. Log. Comput..
[23] V. Baleva,et al. The jump operation for structure degrees , 2006, Arch. Math. Log..
[24] Andrea Sorbi,et al. On Extensions of Embeddings into the Enumeration Degrees of the -Sets , 2005, J. Math. Log..
[25] Julia F. Knight,et al. Enumerations in computable structure theory , 2005, Ann. Pure Appl. Log..
[26] Alexandra A. Soskova. Minimal Pairs and Quasi-minimal Degrees for the Joint Spectra of Structures , 2005, CiE.
[27] Bakhadyr Khoussainov,et al. Complexity of Categorical Theories with Computable Models , 2004 .
[28] Ivan N. Soskov. Degree Spectra and Co-Spectra of Structures , 2003 .
[29] Gordon Plotkin,et al. A Set-Theoretical Definition of Application , 2003 .
[30] Ivan N. Soskov,et al. Regular enumerations , 2002, Journal of Symbolic Logic.
[31] Theodore A. Slaman,et al. Every Set has a Least Jump Enumeration , 2000 .
[32] Ivan N. Soskov. A jump inversion theorem for the enumeration jump , 2000, Arch. Math. Log..
[33] Gerald E. Sacks,et al. FORCING WITH PERFECT CLOSED SETS , 1999 .
[34] A. Sorbi,et al. Quasi-minimal enumeration degrees and minimal Turing degrees , 1998 .
[35] I︠U︡riĭ Leonidovich Ershov. Definability and Computability , 1996 .
[36] Christopher J. Ash,et al. Generalizations of Enumeration Reducibility Using Recursive Infinitary Propositional Sentences , 1992, Ann. Pure Appl. Log..
[37] Rodney G. Downey,et al. Orderings with th jump degree 0 , 1992 .
[38] Ivan N. Soskov. Computability by means of effectively definable schemes and definability via enumerations , 1990, Arch. Math. Log..
[39] John Chisholm,et al. Effective model theory vs. recursive model theory , 1990, Journal of Symbolic Logic.
[40] David Marker,et al. Non Σn axiomatizable almost strongly minimal theories , 1989, Journal of Symbolic Logic.
[41] Ivan N. Soskov. Definability via enumerations , 1989, Journal of Symbolic Logic.
[42] Julia F. Knight,et al. Generic Copies of Countable Structures , 1989, Ann. Pure Appl. Log..
[43] Julia F. Knight,et al. Degrees coded in jumps of orderings , 1986, Journal of Symbolic Logic.
[44] Kevin McEvoy,et al. Jumps of quasi-minimal enumeration degrees , 1985, Journal of Symbolic Logic.
[45] S. Barry Cooper,et al. Partial degrees and the density problem. Part 2: The enumeration degrees of the Σ2 sets are dense , 1984, Journal of Symbolic Logic.
[46] Linda Jean Richter. Degrees of Structures , 1981, Journal of Symbolic Logic.
[47] Yiannis N. Moschovakis,et al. Elementary induction on abstract structures , 1974 .
[48] John Case,et al. Enumeration reducibility and partial degrees , 1971 .
[49] Hilary Putnam,et al. A note on the hyperarithmetical hierarchy , 1970, Journal of Symbolic Logic.
[50] Yiannis N. Moschovakis,et al. Abstract Computability and Invariant Definability , 1970, Journal of Symbolic Logic.
[51] Yiannis N. Moschovakis,et al. Abstract first order computability. II , 1969 .
[52] C. Jockusch. Semirecursive sets and positive reducibility , 1968 .
[53] G. Sacks,et al. Metarecursive sets , 1965, Journal of Symbolic Logic.
[54] J. Myhill. Note on degrees of partial functions , 1961 .
[55] Joseph R. Shoenfield,et al. Degrees of models , 1960, Journal of Symbolic Logic.
[56] Peter Koepke,et al. Ash's theorem for abstract structures , 2016 .
[57] Joel David Hamkins,et al. Effective model theory: approach via σ-definability , 2013 .
[58] Mariya Ivanova Soskova,et al. Kalimullin Pairs of §02 w-Enumeration Degrees , 2011, Int. J. Softw. Informatics.
[59] Hristo Ganchev. Definability in the local theory of the ω-enumeration degrees , 2009 .
[60] H. Ganchev,et al. The high / low hierarchy in the local structure of the ω-enumeration degrees , 2009 .
[61] Antonio Montalb An,et al. NOTES ON THE JUMP OF A STRUCTURES , 2009 .
[62] Mariya Ivanova Soskova,et al. EMBEDDING COUNTABLE PARTIAL ORDERINGS IN THE ENUMERATION DEGREES AND THE ω-ENUMERATION DEGREES , 2009 .
[63] Ivan N. Soskov. THE JUMP OPERATOR ON THE ω-ENUMERATION DEGREES , 2008 .
[64] Hristo Ganchev. Exact Pair Theorem for the ω-Enumeration Degrees , 2007 .
[65] Ivan N. Soskov. THE ω-ENUMERATION DEGREES , 2007 .
[66] Luigi Acerbi,et al. Computation and Logic in the Real World , 2007, Lecture Notes in Computer Science.
[67] Ivan N. Soskov. CONSTRUCTING MINIMAL PAIRS OF DEGREES , 2006 .
[68] Hristo Ganchev. A Total Degree Splitting Theorem and a Jump Inversion Splitting Theorem , 2005 .
[69] S. Cooper,et al. Splitting Properties of Total Enumeration Degrees , 2003 .
[70] V. Boutchkova. Genericity in Abstract Structure Degrees , 2002 .
[71] Julia A. Knight,et al. Computable structures and the hyperarithmetical hierarchy , 2000 .
[72] Stephan Wehner,et al. Enumerations, countable structures and Turing degrees , 1998 .
[73] Theodore A. Slaman,et al. Relative to any nonrecursive set , 1998 .
[74] J. Knight,et al. Chapter 7 Degrees of models , 1998 .
[75] Dimitŭr Genchev Skordev. Computability in combinatory spaces , 1992 .
[76] Linda Jean Richter,et al. Degrees of Unsolvability of Models , 1977 .
[77] J. C. Shepherdson,et al. Computation Over Abstract Structures: Serial and Parallel Procedures and Friedman's Effective Definitional Schemes , 1975 .
[78] Jon Barwise,et al. Admissible sets and structures , 1975 .
[79] L. Goddard. Enumeration , 1972, Nature.
[80] Georg Kreisel,et al. Some Reasons for Generalizing Recursion Theory , 1971 .
[81] Alan L. Selman,et al. Arithmetical Reducibilities I , 1971 .
[82] Harvey M. Friedman,et al. Algorithmic Procedures, Generalized Turing Algorithms, and Elementary Recursion Theory , 1971 .
[83] Richard Montague,et al. Recursion Theory as a Branch of Model Theory1 , 1968 .
[84] R. Platek. Foundations of recursion theory , 1966 .
[85] H. Rogers,et al. Reducibility and Completeness for Sets of Integers , 1959 .