CMAS 3D, a new program to visualize and project major elements compositions in the CMAS system

CMAS 3D, developed in MATLAB^(R), is a program to support visualization of major element chemical data in three dimensions. Such projections are used to discuss correlations, metamorphic reactions and the chemical evolution of rocks, melts or minerals. It can also project data into 2D plots. The CMAS 3D interface makes it easy to use, and does not require any knowledge of Matlab^(R) programming. CMAS 3D uses data compiled in a Microsoft Excel(TM) spreadsheet. Although useful for scientific research, the program is also a powerful tool for teaching.

[1]  E. R. Secnit Sapphire-Bearing Rocks from MacRobertson Land, Antarctica , 1957 .

[2]  M. Hirschmann,et al.  Alkalic magmas generated by partial melting of garnet pyroxenite , 2003 .

[3]  L. Grossman,et al.  CaO-MgO-Al2O3-SiO2 liquids: Chemical and isotopic effects of Mg and Si evaporation in a closed system of solar composition , 2003 .

[4]  P. Boivin,et al.  The nature of melt inclusions inside minerals in an ultramafic cumulate from Adak volcanic center, aleutian arc: implications for the origin of high-Al basalts , 2004 .

[5]  L. Grossman,et al.  Condensation of CaOMgOAl2O3SiO2 liquids from cosmic gases , 1995 .

[6]  John V. Smith,et al.  Multivectors: Nine components represented on a ternary diagram , 2006, Comput. Geosci..

[7]  A. Christy The stability of sapphirine + clinopyroxene: implications for phase relations in the CaO-MgO-Al2O3-SiO2 system under deep-crustal and upper mantle conditions , 1989 .

[8]  C. Garrido,et al.  Diversity of Mafic Rocks in the Ronda Peridotite: Evidence for Pervasive Melt–Rock Reaction during Heating of Subcontinental Lithosphere by Upwelling Asthenosphere , 1999 .

[9]  M. O'hara The bearing of phase equilibria studies in synthetic and natural systems on the origin and evolution of basic and ultrabasic rocks , 1968 .

[10]  D. Ebel,et al.  Formation of refractory inclusions by evaporation of condensate precursors , 2002 .

[11]  M. Hirschmann,et al.  High-pressure partial melting of garnet pyroxenite: Possible mafic lithologies in the source of ocean island basalts , 2003 .

[12]  M. Hirschmann,et al.  High-pressure Partial Melting of Mafic Lithologies in the Mantle , 2004 .

[13]  H. Meyer,et al.  Sapphirine, sillimanite, and garnet in granulite xenoliths from Stockdale kimberlite, Kansas , 1976 .

[14]  J. Kornprobst,et al.  Les pyroxenolites a grenat du massif de lherzolite de Moncaup (Haute Garonne - France); Caracteres communs avec certaines enclaves des basaltes alcalins , 1972 .

[15]  J. Cottin,et al.  Oceanic mafic granulite xenoliths from the Kerguelen archipelago , 1994, Nature.

[16]  J. Eiler,et al.  Primitive CaO‐rich, silica‐undersaturated melts in island arcs: Evidence for the involvement of clinopyroxene‐rich lithologies in the petrogenesis of arc magmas , 2000 .

[17]  Basaltic Volcanism Study Basaltic volcanism on the terrestrial planets , 1981 .

[18]  J. Kornprobst Les péridotites et les pyroxénolites du massif ultrabasique des Beni Bouchera: une étude expérimentale entre 1100 et 1550° C, sous 15 à 30 kilobars de pression sèche , 1970 .

[19]  B. Leake,et al.  Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names , 1997 .

[20]  M. Petrelli ``Petrograph'': a New Software for the Analysis and Presentation of Geochemical Data , 2003 .

[21]  Xianhua Li,et al.  GeoPlot: An Excel VBA program for geochemical data plotting , 2006, Comput. Geosci..

[22]  Giovanni Ferraris,et al.  NOMENCLATURE OF AMPHIBOLES: ADDITIONS AND REVISIONS TO THE INTERNATIONAL MINERALOGICAL ASSOCIATION’S 1997 RECOMMENDATIONS , 2003 .