Talbot quadratures and rational approximations

Many computational problems can be solved with the aid of contour integrals containing ez in the integrand: examples include inverse Laplace transforms, special functions, functions of matrices and operators, parabolic PDEs, and reaction-diffusion equations. One approach to the numerical quadrature of such integrals is to apply the trapezoid rule on a Hankel contour defined by a suitable change of variables. Optimal parameters for three classes of such contours have recently been derived: (a) parabolas, (b) hyperbolas, and (c) cotangent contours, following Talbot in 1979. The convergence rates for these optimized quadrature formulas are very fast: roughly O(3-N), where N is the number of sample points or function evaluations. On the other hand, convergence at a rate apparently about twice as fast, O(9.28903-N), can be achieved by using a different approach: best supremum-norm rational approximants to ez for z∈(–∞,0], following Cody, Meinardus and Varga in 1969. (All these rates are doubled in the case of self-adjoint operators or real integrands.) It is shown that the quadrature formulas can be interpreted as rational approximations and the rational approximations as quadrature formulas, and the strengths and weaknesses of the different approaches are discussed in the light of these connections. A MATLAB function is provided for computing Cody–Meinardus–Varga approximants by the method of Carathéodory–Fejér approximation.

[1]  G. Halphen Traité des fonctions elliptiques et de leurs applications , 1888 .

[2]  H. E. Salzer,et al.  Orthogonal polynomials arising in the numerical evaluation of inverse Laplace transforms , 1955 .

[3]  R. Varga On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations , 1961 .

[4]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[5]  Leon M. Hall,et al.  Special Functions , 1998 .

[6]  G. Meinardus Approximation of Functions: Theory and Numerical Methods , 1967 .

[7]  R. Varga,et al.  Chebyshev rational approximations to e−x in [0, +∞) and applications to heat-conduction problems , 1969 .

[8]  Jiri Vlach,et al.  Numerical method for transient responses of linear networks with lumped , 1969 .

[9]  R. Piessens On a numerical method for the calculation of transient responses , 1971 .

[10]  R. Piessens Gaussian quadrature formulas for the numerical integration of Bromwich's integral and the inversion of the laplace transform , 1971 .

[11]  F. W. J. Olver,et al.  The Special Functions and Their Approximations (Vols. I & II Yudell L. Luke) , 1972 .

[12]  W. E. Culham,et al.  A comparison of Crank-Nicolson and Chebyshev rational methods for numerically solving linear parabolic equations , 1972 .

[13]  C. W. Clenshaw,et al.  The special functions and their approximations , 1972 .

[14]  Arnold Schönhage Zur rationalen approximierbarkeit von e−xüber [0, ∞) , 1973 .

[15]  V. Zakian Properties of Imn and Jmn approximants and applications to numerical inversion of Laplace transforms and initial value problems , 1975 .

[16]  Properties of Constants for a Quadrature Formula to Evaluate Bromwich's Integral , 1976 .

[17]  Error Estimation in Numerical Inversion of Laplace Transforms Using Padé Approximation , 1978 .

[18]  A. Talbot The Accurate Numerical Inversion of Laplace Transforms , 1979 .

[19]  David A. Swayne,et al.  High-Order Near Best Uniform Approximations to the Solution of Heat Conduction Problems , 1980, IFIP Congress.

[20]  L. Trefethen Chebyshev Approximation on the Unit Disk , 1983 .

[21]  L. Trefethen,et al.  The Carathéodory–Fejér Method for Real Rational Approximation , 1983 .

[22]  E. Rakhmanov,et al.  EQUILIBRIUM DISTRIBUTIONS AND DEGREE OF RATIONAL APPROXIMATION OF ANALYTIC FUNCTIONS , 1989 .

[23]  Yousef Saad,et al.  On the parallel solution of parabolic equations , 1989, ICS '89.

[24]  Vilmos Totik,et al.  General Orthogonal Polynomials , 1992 .

[25]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[26]  Alphonse P. Magnus,et al.  Asymptotics and Super Asymptotics for Best Rational Approximation Error Norms to the Exponential Function (The ‘1/9’ Problem) by the Carathéodory-Fejér Method , 1994 .

[27]  D. Calvetti,et al.  Incomplete partial fractions for parallel evaluation of rational matrix functions , 1995 .

[28]  E. Saff,et al.  Logarithmic Potentials with External Fields , 1997 .

[29]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[30]  Yan Ya,et al.  Exponentials of Symmetric Matrices through Tridiagonal Reductions , 1998 .

[31]  Dongwoo Sheen,et al.  A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature , 2000, Math. Comput..

[32]  Ivan P. Gavrilyuk,et al.  Exponentially Convergent Parallel Discretization Methods for the First Order Evolution Equations , 2001 .

[33]  Christian Lubich,et al.  Fast Convolution for Nonreflecting Boundary Conditions , 2002, SIAM J. Sci. Comput..

[34]  A. Aptekarev Sharp constants for rational approximations of analytic functions , 2002 .

[35]  Aly-Khan Kassam Solving reaction-diffusion equations 10 times faster , 2003 .

[36]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[37]  Dongwoo Sheen,et al.  A parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature , 2003 .

[38]  C. Palencia,et al.  On the numerical inversion of the Laplace transform of certain holomorphic mappings , 2004 .

[39]  Nico M. Temme,et al.  Computing Special Functions by Using Quadrature Rules , 2004, Numerical Algorithms.

[40]  V. Thomée,et al.  Time discretization of an evolution equation via Laplace transforms , 2004 .

[41]  Cesar Palencia,et al.  Fast Runge-Kutta approximation of inhomogeneous parabolic equations , 2005, Numerische Mathematik.

[42]  Ivan P. Gavrilyuk,et al.  Exponentially Convergent Algorithms for the Operator Exponential with Applications to Inhomogeneous Problems in Banach Spaces , 2005, SIAM J. Numer. Anal..

[43]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[44]  Cesar Palencia,et al.  A spectral order method for inverting sectorial Laplace transforms , 2005 .

[45]  Christian Lubich,et al.  Fast and Oblivious Convolution Quadrature , 2006, SIAM J. Sci. Comput..

[46]  J. A. C. Weideman,et al.  Optimizing Talbot's Contours for the Inversion of the Laplace Transform , 2006, SIAM J. Numer. Anal..

[47]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[48]  Lloyd N. Trefethen,et al.  Computing the Gamma Function Using Contour Integrals and Rational Approximations , 2007, SIAM J. Numer. Anal..

[49]  Lloyd N. Trefethen,et al.  Is Gauss Quadrature Better than Clenshaw-Curtis? , 2008, SIAM Rev..