The renaissance of black phosphorus

One hundred years after its first successful synthesis in the bulk form in 1914, black phosphorus (black P) was recently rediscovered from the perspective of a 2D layered material, attracting tremendous interest from condensed matter physicists, chemists, semiconductor device engineers, and material scientists. Similar to graphite and transition metal dichalcogenides (TMDs), black P has a layered structure but with a unique puckered single-layer geometry. Because the direct electronic band gap of thin film black P can be varied from 0.3 eV to around 2 eV, depending on its film thickness, and because of its high carrier mobility and anisotropic in-plane properties, black P is promising for novel applications in nanoelectronics and nanophotonics different from graphene and TMDs. Black P as a nanomaterial has already attracted much attention from researchers within the past year. Here, we offer our opinions on this emerging material with the goal of motivating and inspiring fellow researchers in the 2D materials community and the broad readership of PNAS to discuss and contribute to this exciting new field. We also give our perspectives on future 2D and thin film black P research directions, aiming to assist researchers coming from a variety of disciplines who are desirous of working in this exciting research field.

[1]  Takashi Taniguchi,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS Nano.

[2]  A. Neto,et al.  Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors. , 2014, ACS nano.

[3]  L. Lauhon,et al.  Effective passivation of exfoliated black phosphorus transistors against ambient degradation. , 2014, Nano letters.

[4]  Aaron M. Jones,et al.  Highly anisotropic and robust excitons in monolayer black phosphorus. , 2014, Nature nanotechnology.

[5]  Gyu-Tae Kim,et al.  Few-layer black phosphorus field-effect transistors with reduced current fluctuation. , 2014, ACS nano.

[6]  P. Ye,et al.  Semiconducting black phosphorus: synthesis, transport properties and electronic applications. , 2014, Chemical Society reviews.

[7]  M. Ezawa Topological origin of quasi-flat edge band in phosphorene , 2014 .

[8]  B. Sumpter,et al.  Electronic bandgap and edge reconstruction in phosphorene materials. , 2014, Nano letters.

[9]  Hao Jiang,et al.  Black phosphorus radio-frequency transistors. , 2014, Nano letters.

[10]  F. Xia,et al.  Two-dimensional material nanophotonics , 2014, Nature Photonics.

[11]  Yan Li,et al.  Modulation of the Electronic Properties of Ultrathin Black Phosphorus by Strain and Electrical Field , 2014 .

[12]  James C. M. Hwang,et al.  Temporal and Thermal Stability of Al2O3-Passivated Phosphorene MOSFETs , 2014, IEEE Electron Device Letters.

[13]  X. Zeng,et al.  Structure and stability of two dimensional phosphorene with O or NH functionalization , 2014, 1409.7719.

[14]  H. Ushiyama,et al.  Comparative Study of Sodium and Lithium Intercalation and Diffusion Mechanism in Black Phosphorus from First-principles Simulation , 2014 .

[15]  B. Yakobson,et al.  Two-dimensional mono-elemental semiconductor with electronically inactive defects: the case of phosphorus. , 2014, Nano letters.

[16]  A. Ramasubramaniam,et al.  Ab initio studies of thermodynamic and electronic properties of phosphorene nanoribbons , 2014 .

[17]  P. Ye,et al.  Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. , 2014, ACS nano.

[18]  M. Demarteau,et al.  Tunable transport gap in phosphorene. , 2014, Nano letters.

[19]  R. Leonelli,et al.  Exfoliating pristine black phosphorus down to the monolayer: photo-oxidation and electronic confinement effects , 2014, 1408.0345.

[20]  Dumitru Dumcenco,et al.  Electrical transport properties of single-layer WS2. , 2014, ACS nano.

[21]  Phaedon Avouris,et al.  Origin of photoresponse in black phosphorus phototransistors , 2014, 1407.7286.

[22]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[23]  Xiaoyu Han,et al.  Strain and orientation modulated bandgaps and effective masses of phosphorene nanoribbons. , 2014, Nano letters.

[24]  P. Ajayan,et al.  Black phosphorus-monolayer MoS2 van der Waals heterojunction p-n diode. , 2014, ACS nano.

[25]  Zhixian Zhou,et al.  Polarized photocurrent response in black phosphorus field-effect transistors. , 2014, Nanoscale.

[26]  G. Steele,et al.  Photovoltaic effect in few-layer black phosphorus PN junctions defined by local electrostatic gating , 2014, Nature Communications.

[27]  M. Engel,et al.  Black phosphorus photodetector for multispectral, high-resolution imaging. , 2014, Nano letters.

[28]  Zhen Zhu,et al.  Phase coexistence and metal-insulator transition in few-layer phosphorene: a computational study. , 2014, Physical review letters.

[29]  Li Yang,et al.  Lattice Vibrational Modes and Raman Scattering Spectra of Strained Phosphorene , 2014, 1407.0736.

[30]  Zongfu Yu,et al.  Extraordinary photoluminescence and strong temperature/angle-dependent Raman responses in few-layer phosphorene. , 2014, ACS nano.

[31]  T. Nilges,et al.  Access and in situ growth of phosphorene-precursor black phosphorus , 2014, 1406.7275.

[32]  R. Soklaski,et al.  Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus , 2014 .

[33]  T. Frauenheim,et al.  Phosphorene as a Superior Gas Sensor: Selective Adsorption and Distinct I-V Response. , 2014, The journal of physical chemistry letters.

[34]  Gang Su,et al.  Hinge-like structure induced unusual properties of black phosphorus and new strategies to improve the thermoelectric performance , 2014, Scientific Reports.

[35]  H. J. Liu,et al.  Phosphorene nanoribbon as a promising candidate for thermoelectric applications , 2014, Scientific Reports.

[36]  Mengwei Si,et al.  The Effect of Dielectric Capping on Few-Layer Phosphorene Transistors: Tuning the Schottky Barrier Heights , 2014, IEEE Electron Device Letters.

[37]  Lei Shen,et al.  Band Gaps and Giant Stark Effect in Nonchiral Phosphorene Nanoribbons , 2014 .

[38]  Ryan Soklaski,et al.  Enhanced thermoelectric efficiency via orthogonal electrical and thermal conductances in phosphorene. , 2014, Nano letters.

[39]  Pablo Jarillo-Herrero,et al.  Two-dimensional crystals: phosphorus joins the family. , 2014, Nature nanotechnology.

[40]  Hong Guo,et al.  Electrical contacts to monolayer black phosphorus: A first-principles investigation , 2014, 1404.7207.

[41]  Xihong Peng,et al.  Edge effects on the electronic properties of phosphorene nanoribbons , 2014, 1404.5995.

[42]  Y. Sun,et al.  Large thermoelectric power factors in black phosphorus and phosphorene , 2014, 1404.5171.

[43]  F. Xia,et al.  Tunable optical properties of multilayer black phosphorus thin films , 2014, 1404.4030.

[44]  Fengnian Xia,et al.  Plasmons and screening in monolayer and multilayer black phosphorus. , 2014, Physical review letters.

[45]  V. Tran,et al.  Scaling laws for the band gap and optical response of phosphorene nanoribbons , 2014, 1404.2247.

[46]  Zhenhua Ni,et al.  Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization , 2014, Nano Research.

[47]  Mikhail I. Katsnelson,et al.  Quasiparticle band structure and tight-binding model for single- and bilayer black phosphorus , 2014, 1404.0618.

[48]  Harold S. Park,et al.  Mechanical properties of single-layer black phosphorus , 2014, 1404.0232.

[49]  Qun Wei,et al.  Superior mechanical flexibility of phosphorene and few-layer black phosphorus , 2014, 1403.7882.

[50]  Xiaojun Wu,et al.  Phosphorene Nanoribbons, Phosphorus Nanotubes, and van der Waals Multilayers , 2014, 1403.6209.

[51]  Jun Dai,et al.  Bilayer Phosphorene: Effect of Stacking Order on Bandgap and Its Potential Applications in Thin-Film Solar Cells. , 2014, The journal of physical chemistry letters.

[52]  Hanchul Kim Effect of van der Waals interaction on the structural and cohesive properties of black phosphorus , 2014 .

[53]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[54]  Harold S. Park,et al.  Negative poisson’s ratio in single-layer black phosphorus , 2014, Nature Communications.

[55]  Xihong Peng,et al.  Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene , 2014, 1403.3771.

[56]  Zhen Zhu,et al.  Semiconducting layered blue phosphorus: a computational study. , 2014, Physical review letters.

[57]  Li Yang,et al.  Strain-engineering the anisotropic electrical conductance of few-layer black phosphorus. , 2014, Nano letters.

[58]  Li Yang,et al.  Strain-Engineering Anisotropic Electrical Conductance of Phosphorene , 2014 .

[59]  G. Steele,et al.  Isolation and characterization of few-layer black phosphorus , 2014, 1403.0499.

[60]  G. Steele,et al.  Fast and broadband photoresponse of few-layer black phosphorus field-effect transistors. , 2014, Nano letters.

[61]  Rostislav A. Doganov,et al.  Electric field effect in ultrathin black phosphorus , 2014, 1402.5718.

[62]  F. Xia,et al.  Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics , 2014, Nature Communications.

[63]  X. Kong,et al.  High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus , 2014, Nature Communications.

[64]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[65]  Xianfan Xu,et al.  Phosphorene: an unexplored 2D semiconductor with a high hole mobility. , 2014, ACS nano.

[66]  A S Rodin,et al.  Strain-induced gap modification in black phosphorus. , 2014, Physical review letters.

[67]  Aaron M. Jones,et al.  Spin–layer locking effects in optical orientation of exciton spin in bilayer WSe2 , 2013, Nature Physics.

[68]  A. Neto,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films. , 2013 .

[69]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[70]  Wei Liu,et al.  Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. , 2013, Nano letters.

[71]  S. Pei,et al.  High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains , 2013, 1303.0086.

[72]  A. Javey,et al.  High-performance single layered WSe₂ p-FETs with chemically doped contacts. , 2012, Nano letters.

[73]  P. Schmidt,et al.  Synthesis and identification of metastable compounds: black arsenic--science or fiction? , 2012, Angewandte Chemie.

[74]  C. Benmore,et al.  Pressure-induced crystallization of amorphous red phosphorus , 2012 .

[75]  Wi Hyoung Lee,et al.  Single‐Gate Bandgap Opening of Bilayer Graphene by Dual Molecular Doping , 2012, Advanced materials.

[76]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[77]  H. Kurz,et al.  High on/off ratios in bilayer graphene field effect transistors realized by surface dopants. , 2011, Nano letters.

[78]  S. Clark,et al.  Compressibility of cubic white, orthorhombic black, rhombohedral black, and simple cubic black phosphorus , 2010 .

[79]  A. Hayashi,et al.  All-solid-state lithium secondary batteries with high capacity using black phosphorus negative electrode , 2010 .

[80]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[81]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[82]  T. Nilges,et al.  A fast low-pressure transport route to large black phosphorus single crystals , 2008 .

[83]  H. R. Krishnamurthy,et al.  Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. , 2008, Nature nanotechnology.

[84]  J. Kedzierski,et al.  Epitaxial Graphene Transistors on SiC Substrates , 2008, IEEE Transactions on Electron Devices.

[85]  S. Chou,et al.  Graphene transistors fabricated via transfer-printing in device active-areas on large wafer , 2007 .

[86]  H. Sohn,et al.  Black Phosphorus and its Composite for Lithium Rechargeable Batteries , 2007 .

[87]  P. Schmidt,et al.  Au3SnP7@black phosphorus: an easy access to black phosphorus. , 2007, Inorganic chemistry.

[88]  Aachen,et al.  A Graphene Field-Effect Device , 2007, IEEE Electron Device Letters.

[89]  Michael S. Fuhrer,et al.  Realization and electrical characterization of ultrathin crystals of layered transition-metal dichalcogenides , 2007 .

[90]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[91]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[92]  A. Morita,et al.  Electrical Properties of Black Phosphorus Single Crystals Prepared by the Bismuth-Flux Method , 1991 .

[93]  A. Morita,et al.  Electron-phonon interaction and anisotropic mobility in black phosphorus , 1989 .

[94]  A. Morita,et al.  The Energy Band Structure of Black Phosphorus and Angle-Resolved Ultraviolet Photoelectron Spectra , 1987 .

[95]  N. Suzuki,et al.  Interplanar forces of black phosphorus caused by electron-lattice interaction , 1987 .

[96]  A. Morita,et al.  Semiconducting black phosphorus , 1986 .

[97]  K. Tachikawa,et al.  Anomalous superconductivity and pressure induced phase transitions in black phosphorus , 1985 .

[98]  S. Sugai,et al.  Raman and infrared reflection spectroscopy in black phosphorus , 1985 .

[99]  A. Morita,et al.  Band structure and optical properties of black phosphorus , 1984 .

[100]  Y. Akahama,et al.  Far-Infrared Cyclotron Resonance Absorptions in Black Phosphorus Single Crystals , 1983 .

[101]  Shoichi Endo,et al.  Electrical Properties of Black Phosphorus Single Crystals , 1983 .

[102]  Y. Kondo,et al.  Infrared Optical Absorption Due to One and Two Phonon Processes in Black Phosphorus , 1983 .

[103]  Y. Akahama,et al.  Growth of Large Single Crystals of Black Phosphorus under High Pressure , 1982 .

[104]  A. Morita,et al.  Electronic Structure of Black Phosphorus in Self-Consistent Pseudopotential Approach , 1982 .

[105]  Akira Morita,et al.  Electronic Structure of Black Phosphorus in Tight Binding Approach , 1981 .

[106]  A. Morita,et al.  Electronic structure of black phosphorus: Tight binding approach , 1981 .

[107]  B. Matthias,et al.  Superconducting Phosphorus , 1968, Science.

[108]  S. Rundqvist,et al.  Refinement of the crystal structure of black phosphorus , 1965 .

[109]  J. C. Jamieson Crystal Structures Adopted by Black Phosphorus at High Pressures , 1963, Science.

[110]  H. Krebs,et al.  Über die Struktur und Eigenschaften der Halbmetalle. VIII. Die katalytische Darstellung des schwarzen Phosphors , 1955 .

[111]  R. Keyes The Electrical Properties of Black Phosphorus , 1953 .

[112]  P. W. Bridgman TWO NEW MODIFICATIONS OF PHOSPHORUS. , 1914 .

[113]  A. Kis,et al.  Electrical Transport Properties of Single-Layer WS 2 , 2014 .

[114]  A. Splendiani,et al.  Emerging Photoluminescence in Monolayer , 2010 .