MODEL ATMOSPHERES FOR MASSIVE GAS GIANTS WITH THICK CLOUDS: APPLICATION TO THE HR 8799 PLANETS AND PREDICTIONS FOR FUTURE DETECTIONS

We have generated an extensive new suite of massive giant planet atmosphere models and used it to obtain fits to photometric data for the planets HR 8799b, c, and d. We consider a wide range of cloudy and cloud-free models. The cloudy models incorporate different geometrical and optical thicknesses, modal particle sizes, and metallicities. For each planet and set of cloud parameters, we explore grids in gravity and effective temperature, with which we determine constraints on the planet's mass and age. Our new models yield statistically significant fits to the data, and conclusively confirm that the HR 8799 planets have much thicker clouds than those required to explain data for typical L and T dwarfs. Both models with 1) physically thick forsterite clouds and a 60-micron modal particle size and 2) clouds made of 1 micron-sized pure iron droplets and 1% supersaturation fit the data. Current data are insufficient to accurately constrain the microscopic cloud properties, such as composition and particle size. The range of best-estimated masses for HR 8799b, HR 8799c, and HR 8799d conservatively span 2-12 M_J, 6-13 M_J, and 3-11 M_J, respectively and imply coeval ages between ~10 and ~150 Myr, consistent with previously reported stellar age. The best-fit temperatures and gravities are slightly lower than values obtained by Currie et al. (2011) using even thicker cloud models. Finally, we use these models to predict the near-to-mid IR colors of soon-to-be imaged planets. Our models predict that planet-mass objects follow a locus in some near-to-mid IR color-magnitude diagrams that is clearly separable from the standard L/T dwarf locus for field brown dwarfs.

[1]  A. Burrows,et al.  THE DEUTERIUM-BURNING MASS LIMIT FOR BROWN DWARFS AND GIANT PLANETS , 2010, 1008.5150.

[2]  Mathias Tecza,et al.  The Gemini NICI Planet-Finding Campaign , 2010, Astronomical Telescopes + Instrumentation.

[3]  Detectability of dirty dust grains in brown dwarf atmospheres , 2006, astro-ph/0603341.

[4]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[5]  K. Lodders,et al.  Atmospheric Chemistry of the Brown Dwarf Gliese 229B: Thermochemical Equilibrium Predictions , 1996 .

[6]  Dust in the Photospheric Environment: Unified Cloudy Models of M, L, and T Dwarfs , 2002, astro-ph/0204401.

[7]  Jr.,et al.  A New High Contrast Imaging Program at Palomar Observatory , 2010, 1012.0008.

[8]  L. Hillenbrand,et al.  HD 203030B: An Unusually Cool Young Substellar Companion near the L/T Transition , 2006, astro-ph/0607514.

[9]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[10]  F. Allard,et al.  Evolutionary Models for Very Low-Mass Stars and Brown Dwarfs with Dusty Atmospheres , 2000 .

[11]  David Lafreniere,et al.  HST/NICMOS DETECTION OF HR 8799 b IN 1998 , 2009, 0902.3247.

[12]  Michael C. Liu,et al.  NEAR-INFRARED SPECTROSCOPY OF THE EXTRASOLAR PLANET HR 8799 b , 2010, 1008.4582.

[13]  B. Macintosh,et al.  Images of a fourth planet orbiting HR 8799 , 2010, Nature.

[14]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[15]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[16]  Bruce A. Macintosh,et al.  The Gemini Planet Imager: from science to design to construction , 2008, Astronomical Telescopes + Instrumentation.

[17]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[18]  R. Klein,et al.  Dust in brown dwarfs - I. Dust formation under turbulent conditions on microscopic scales , 2001 .

[19]  A. Burrows A theoretical look at the direct detection of giant planets outside the Solar System , 2005, Nature.

[20]  Ian R. Parry,et al.  A new integral field spectrograph for exoplanetary science at Palomar , 2008, Astronomical Telescopes + Instrumentation.

[21]  B. Macintosh,et al.  Direct Imaging of Multiple Planets Orbiting the Star HR 8799 , 2008, Science.

[22]  Adam Burrows,et al.  L AND T DWARF MODELS AND THE L TO T TRANSITION , 2006 .

[23]  D. Mouillet,et al.  A companion to AB Pic at the planet/brown dwarf boundary , 2005, astro-ph/0504658.

[24]  Ivan Hubeny,et al.  A computer program for calculating non-LTE model stellar atmospheres , 1988 .

[25]  Gilles Chabrier,et al.  An Equation of State for Low-Mass Stars and Giant Planets , 1995 .

[26]  J. R. Houck,et al.  A Spitzer Infrared Spectrograph Spectral Sequence of M, L, and T Dwarfs , 2006 .

[27]  J. Bochanski,et al.  CLOUDS IN THE COLDEST BROWN DWARFS: FIRE SPECTROSCOPY OF ROSS 458C , 2010, 1009.5722.

[28]  Michael Shao,et al.  Extreme adaptive optics for the Thirty Meter Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[29]  Mark Clampin,et al.  Optical Images of an Exosolar Planet 25 Light-Years from Earth , 2008, Science.

[30]  Tae-Soo Pyo,et al.  A COMBINED SUBARU/VLT/MMT 1–5 μm STUDY OF PLANETS ORBITING HR 8799: IMPLICATIONS FOR ATMOSPHERIC PROPERTIES, MASSES, AND FORMATION , 2011, 1101.1973.

[31]  Suresh Sivanandam,et al.  THERMAL INFRARED MMTAO OBSERVATIONS OF THE HR 8799 PLANETARY SYSTEM , 2010, 1003.4986.

[32]  U. Nowak,et al.  Dust in brown dwarfs - IV. Dust formation and driven turbulence on mesoscopic scales , 2004, astro-ph/0404272.

[33]  Eric Mamajek,et al.  The Planetary Mass Companion 2MASS 1207–3932B: Temperature, Mass, and Evidence for an Edge-on Disk , 2006, astro-ph/0610550.

[34]  Ivan Hubeny,et al.  Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method , 1995 .

[35]  Frantz Martinache,et al.  TWO WIDE PLANETARY-MASS COMPANIONS TO SOLAR-TYPE STARS IN UPPER SCORPIUS , 2010, 1011.2201.

[36]  Andrew S. Ackerman,et al.  Precipitating Condensation Clouds in Substellar Atmospheres , 2001, astro-ph/0103423.

[37]  D. Saumon,et al.  The Evolution of L and T Dwarfs in Color-Magnitude Diagrams , 2008, 0808.2611.

[38]  A. Burrows,et al.  A Systematic Study of Departures from Chemical Equilibrium in the Atmospheres of Substellar Mass Objects , 2007, 0705.3922.

[39]  Dust in the Photospheric Environment. III. A Fundamental Element in the Characterization of Ultracool Dwarfs , 2004, astro-ph/0411766.

[40]  Spitzer Infrared Spectrograph Observations of L, M, and T Dwarfs , 2004 .

[41]  M. Tamura,et al.  MID-INFRARED PHOTOMETRY OF COLD BROWN DWARFS: DIVERSITY IN AGE, MASS, AND METALLICITY , 2010, 1001.0762.

[42]  Motohide Tamura,et al.  Subaru Strategic Exploration of Exoplanets and Disks with HiCIAO/AO188 (SEEDS) , 2009 .

[43]  W. Brandner,et al.  SPATIALLY RESOLVED SPECTROSCOPY OF THE EXOPLANET HR 8799 c , 2010, 1001.2017.

[44]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[45]  D. Mouillet,et al.  A giant planet candidate near a young brown dwarf - Direct VLT/NACO observations using IR wavefront sensing , 2004 .

[46]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1999 .

[47]  S. Seager,et al.  Clouds and chemistry: Ultracool dwarf atmospheric properties from optical and infrared colors , 2002 .

[48]  David Lafreniere,et al.  THE DIRECTLY IMAGED PLANET AROUND THE YOUNG SOLAR ANALOG 1RXS J160929.1 − 210524: CONFIRMATION OF COMMON PROPER MOTION, TEMPERATURE, AND MASS , 2010, 1006.3070.

[49]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[50]  David Lafreniere,et al.  Direct Imaging and Spectroscopy of a Planetary-Mass Candidate Companion to a Young Solar Analog , 2008, 0809.1424.

[51]  C. Helling,et al.  IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. I. THE ROLE OF ELECTRON AVALANCHE , 2010, 1010.4389.