Chaos and adaptive control in two prey, one predator system with nonlinear feedback

We show that the continuous time three species prey–predator populations can be asymptotically stabilized using a nonlinear feedback control inputs. The necessary feedback control law for asymptotic stability of this system is obtained. The system appears to exhibit a chaotic behavior for a range of parametric values. The range of the system parameters for which the subsystems converge to limit cycles is determined. The results of some other models in the literature can be obtained as special cases of the present model. Numerical examples and analysis of the results are presented.

[1]  A. El-Gohary Optimal control of the genital herpes epidemic , 2001 .

[2]  James Baglama,et al.  A nutrient-prey-predator model with intratrophic predation , 2002, Appl. Math. Comput..

[3]  Joydev Chattopadhyay,et al.  A predator—prey model with disease in the prey , 1999 .

[4]  J. Pitchford,et al.  Intratrophic predation in simple predator-prey models , 1998 .

[5]  D Mukherjee,et al.  Uniform persistence in a generalized prey-predator system with parasitic infection. , 1998, Bio Systems.

[6]  Tomé,et al.  Stochastic lattice gas model for a predator-prey system. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  A. S. Al-Ruzaiza,et al.  Optimal Control of the Equilibrium State of a Prey-Predator Model , 2002 .

[8]  J. Thompson,et al.  Nonlinear Dynamics and Chaos , 2002 .

[9]  Mohammed S El Naschie,et al.  Stress, Stability and Chaos in Structural Engineering: An Energy Approach , 1990 .

[10]  Dmitriĭ Olegovich Logofet,et al.  Stability of Biological Communities , 1983 .

[11]  E. A. Aponina,et al.  A model of evolutionary appearance of dissipative structure in ecosystems , 1983 .

[12]  R. Sarkar,et al.  Removal of infected prey prevent limit cycle oscillations in an infected prey–predator system—a mathematical study , 2002 .

[13]  Ricard V. Solé,et al.  Control, synchrony and the persistence of chaotic populations , 2001 .

[14]  Sunita Gakkhar,et al.  Chaos in seasonally perturbed ratio-dependent prey–predator system , 2003 .

[15]  Katsuhiko Ogata,et al.  Modern Control Engineering , 1970 .

[16]  Rinaldo B. Schinazi,et al.  Predator-prey and host-parasite spatial stochastic models , 1997 .

[17]  Awad I. El-Gohary,et al.  Optimal control of stochastic prey-predator models , 2003, Appl. Math. Comput..

[18]  Awad I. El-Gohary Optimal control of stochastic lattice of prey-predator models , 2005, Appl. Math. Comput..

[19]  A. Yashin,et al.  Dependent competing risks: a stochastic process model , 1986, Journal of mathematical biology.

[20]  Masaki Katayama,et al.  Global asymptotic stability of a predator-prey system of Holling type , 1999 .

[21]  Adam Lipowski,et al.  Nonequilibrium phase transition in a lattice prey–predator system , 2000 .

[22]  Jan Eisner,et al.  Optimal foraging and predator-prey dynamics III. , 1996, Theoretical population biology.

[23]  R. Khasminskii,et al.  Long term behavior of solutions of the Lotka-Volterra system under small random perturbations , 2001 .

[24]  K. Kleinschmidt,et al.  Book Reviews : INDUSTRIAL NOISE AND VIBRATION CONTROL J.D. Irwin and E.R. Graf Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979 , 1980 .

[25]  Sunita Gakkhar,et al.  Existence of chaos in two-prey, one-predator system , 2003 .

[26]  Sunita Gakkhar,et al.  Order and chaos in a food web consisting of a predator and two independent preys , 2005 .

[27]  M. T. Yassen,et al.  Optimal control and synchronization of Lotka-Volterra model , 2001 .

[28]  J. Velasco-Hernández,et al.  A simple vaccination model with multiple endemic states. , 2000, Mathematical biosciences.

[29]  T. Gard,et al.  Top predator persistence in differential equation models of food chains: The effects of omnivory and external forcing of lower trophic levels , 1982, Journal of mathematical biology.

[30]  Yang Kuang,et al.  Basic Properties of Mathematical Population Models , 2002 .