FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries

Matched-filter searches for gravitational waves from coalescing compact binaries by the LIGO Scientific Collaboration use the FINDCHIRP algorithm: an implementation of the optimal filter with innovations to account for unknown signal parameters and to improve performance on detector data that has nonstationary and non-Gaussian artifacts. We provide details on the FINDCHIRP algorithm as used in the search for subsolar mass binaries, binary neutron stars, neutron starblack hole binaries, and binary black holes.

[1]  T. Hayler,et al.  Search for gravitational waves from binary black hole inspiral, merger and ringdown , 2011, 1102.3781.

[2]  Michele Vallisneri,et al.  Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case , 2003 .

[3]  Improved filters for gravitational waves from inspiraling compact binaries , 1997, gr-qc/9708034.

[4]  B. S. Sathyaprakash,et al.  A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.

[5]  B. S. Sathyaprakash,et al.  Searching for gravitational waves from binary inspirals with LIGO , 2004, 0705.1572.

[6]  Yi Pan,et al.  Comparison of post-Newtonian templates for compact binary inspiral signals in gravitational-wave detectors , 2009, 0907.0700.

[7]  Michele Vallisneri,et al.  Detecting gravitational waves from precessing binaries of spinning compact objects: Adiabatic limit , 2003 .

[8]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[9]  M. Landry,et al.  Calibration of the LIGO detectors for the First LIGO Science Run , 2003 .

[10]  et al,et al.  Search for Gravitational Waves from Low Mass Binary Coalescences in the First Year of Ligo's S5 Data , 2022 .

[11]  Signal based vetoes for the detection of gravitational waves from inspiralling compact binaries , 2005, gr-qc/0502002.

[12]  Sanjeev Dhurandhar,et al.  A data-analysis strategy for detecting gravitational-wave signals from inspiraling compact binaries with a network of laser-interferometric detectors , 2001 .

[13]  S. McWilliams,et al.  Toward faithful templates for non-spinning binary black holes using the effective-one-body approach , 2007, 0706.3732.

[14]  Andrew J. Viterbi Review of Statistical Theory of Signal Detection, 2nd edn.(Helstrom, C. W.; 1968) , 1970, IEEE Trans. Inf. Theory.

[15]  Bernard F. Schutz,et al.  Search for gravitational waves from binary black hole inspirals in LIGO data , 2006 .

[16]  et al,et al.  Detector description and performance for the first coincidence observations between LIGO and GEO , 2004 .

[17]  P. Welch The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms , 1967 .

[18]  D. Brown,et al.  Detailed comparison of LIGO and Virgo inspiral pipelines in preparation for a joint search , 2008 .

[19]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[20]  Luc Blanchet,et al.  Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.

[21]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[22]  Patrick R. Brady,et al.  Excess power statistic for detection of burst sources of gravitational radiation , 2000, gr-qc/0008066.

[23]  Michael Boyle,et al.  Testing gravitational-wave searches with numerical relativity waveforms: results from the first Numerical INJection Analysis (NINJA) project , 2009, 0901.4399.

[24]  Owen Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1996, Physical review. D, Particles and fields.

[25]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[26]  S. Fairhurst,et al.  Interpreting the results of searches for gravitational waves from coalescing binaries , 2007, 0707.2410.

[27]  S. Fairhurst,et al.  The loudest event statistic: general formulation, properties and applications , 2007, 0710.0465.

[28]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[29]  Making h(t) for LIGO , 2004, gr-qc/0405070.

[30]  Report on the second Mock LISA Data Challenge , 2007, 0711.2667.

[31]  J. K. Blackburn,et al.  Observational Limit on Gravitational Waves from Binary Neutron Stars in the Galaxy , 1999, gr-qc/9903108.

[32]  Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. , 1995, Physical review. D, Particles and fields.

[33]  David Blair,et al.  Application of graphics processing units to search pipelines for gravitational waves from coalescing binaries of compact objects , 2009, 0906.4175.

[34]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[35]  Martin M. Fejer,et al.  Analysis of LIGO data for gravitational waves from binary neutron stars , 2004 .

[36]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[37]  et al,et al.  Search for gravitational waves from primordial black hole binary coalescences in the galactic halo , 2005 .

[38]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[39]  C. Helstrom,et al.  Statistical theory of signal detection , 1968 .

[40]  A three-stage search for supermassive black-hole binaries in LISA data , 2007, 0704.2447.

[41]  Joshua R. Smith,et al.  Implications for the origin of GRB 070201 from LIGO observations , 2007 .

[42]  Michael Boyle,et al.  Inspiral-merger-ringdown multipolar waveforms of nonspinning black-hole binaries using the effective-one-body formalism , 2011, 1106.1021.

[43]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[44]  et al,et al.  First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform , 2005, gr-qc/0508065.

[45]  Duncan A. Brown SEARCHING FOR GRAVITATIONAL RADIATION FROM BINARY BLACK HOLE MACHOS IN THE GALACTIC HALO , 2004, 0705.1514.

[46]  T. Cokelaer Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.

[47]  T. Hayler,et al.  Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1 , 2010 .

[48]  M. M. Casey,et al.  Joint LIGO and TAMA300 search for gravitational waves from inspiralling neutron star binaries , 2006 .

[49]  Balasubramanian,et al.  Erratum: Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters , 1996, Physical review. D, Particles and fields.

[50]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[51]  Duncan A Brown Using the INSPIRAL program to search for gravitational waves from low-mass binary inspiral , 2005 .

[52]  David Blair,et al.  Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run , 2009 .

[53]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[54]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[55]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[56]  S. McWilliams,et al.  A data-analysis driven comparison of analytic and numerical coalescing binary waveforms: nonspinning case , 2007, 0704.1964.

[57]  et al,et al.  Search for gravitational waves from binary inspirals in S3 and S4 LIGO data , 2007, 0704.3368.

[58]  et al,et al.  Search for gravitational waves from galactic and extra-galactic binary neutron stars , 2005, gr-qc/0505041.