MicroRNA involvement in hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is the third cause of cancer‐related death worldwide. Curative options for HCC are limited and exclusively available for patients carrying an early stage HCC. In advanced stages, traditional chemotherapy proved to be only marginally effective or even toxic. Thus, the identification of new treatment options is needed. New targets for non‐conventional treatment will necessarily take advantage of progresses on the molecular pathogenesis of HCC. MicroRNAs (miRNAs) are a group of tiny RNAs with a fundamental role in the regulation of gene expression. Aberrant expression of several miRNAs was found to be involved in human hepatocarcinogenesis. miRNA expression signatures were correlated with bio‐pathological and clinical features of HCC. In some cases, aberrantly expressed miRNAs could be linked to cancer‐associated pathways, indicating a direct role in liver tumourigenesis. For example, up‐regulation of mir‐221 and mir‐21 could promote cell cycle progression, reduce cell death and favour angiogenesis and invasion. These findings suggest that miRNAs could become novel molecular targets for HCC treatment. The demonstration of in vivo efficacy and safety of anti‐miRNA compounds has opened the way to their use in clinical trials.

[1]  Qinqin Wang,et al.  microRNA与肺癌 , 2010, Zhongguo fei ai za zhi = Chinese journal of lung cancer.

[2]  A. Schimmer,et al.  Anoikis resistance and tumor metastasis. , 2008, Cancer letters.

[3]  S. Paggi,et al.  Sorafenib in advanced hepatocellular carcinoma. , 2008, The New England journal of medicine.

[4]  C. Croce,et al.  MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma , 2008, Oncogene.

[5]  F. Slack,et al.  let-7 microRNAs in development, stem cells and cancer. , 2008, Trends in molecular medicine.

[6]  George A. Calin,et al.  Expression of microRNAs and protein‐coding genes associated with perineural invasion in prostate cancer , 2008, The Prostate.

[7]  J. Llovet,et al.  Linking molecular classification of hepatocellular carcinoma and personalized medicine: preliminary steps , 2008, Current opinion in oncology.

[8]  Thomas D. Schmittgen,et al.  Methylation mediated silencing of MicroRNA-1 gene and its role in hepatocellular carcinogenesis. , 2008, Cancer research.

[9]  Nathalie Wong,et al.  MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. , 2008, Gastroenterology.

[10]  Ji Young Kim,et al.  MicroRNA miR-199a* Regulates the MET Proto-oncogene and the Downstream Extracellular Signal-regulated Kinase 2 (ERK2)* , 2008, Journal of Biological Chemistry.

[11]  Laura Pelletier,et al.  MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations , 2008, Hepatology.

[12]  T. Patel,et al.  MicroRNA expression profiling: A molecular tool for defining the phenotype of hepatocellular tumors , 2008, Hepatology.

[13]  Kuo-Bin Li,et al.  Profiling MicroRNA Expression in Hepatocellular Carcinoma Reveals MicroRNA-224 Up-regulation and Apoptosis Inhibitor-5 as a MicroRNA-224-specific Target* , 2008, Journal of Biological Chemistry.

[14]  Jae Hoon Kim,et al.  MicroRNA Expression Profiles in Serous Ovarian Carcinoma , 2008, Clinical Cancer Research.

[15]  G. Tseng,et al.  MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. , 2008, The Journal of clinical endocrinology and metabolism.

[16]  S. Kauppinen,et al.  LNA-mediated microRNA silencing in non-human primates , 2008, Nature.

[17]  S. K. Zaidi,et al.  MicroRNAs 221 and 222 bypass quiescence and compromise cell survival. , 2008, Cancer research.

[18]  H. Allgayer,et al.  MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer , 2008, Oncogene.

[19]  Jung-Hwan Yoon,et al.  Gene Expression–Based Recurrence Prediction of Hepatitis B Virus–Related Human Hepatocellular Carcinoma , 2008, Clinical Cancer Research.

[20]  Krista A. Zanetti,et al.  Identification of metastasis‐related microRNAs in hepatocellular carcinoma , 2008, Hepatology.

[21]  Carme Camps,et al.  hsa-miR-210 Is Induced by Hypoxia and Is an Independent Prognostic Factor in Breast Cancer , 2008, Clinical Cancer Research.

[22]  P. Malfertheiner,et al.  Imatinib for hepatocellular cancer--focus on pharmacokinetic/pharmacodynamic modelling and liver function. , 2008, Cancer letters.

[23]  Lin Zhang,et al.  The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis , 2008, Nature Cell Biology.

[24]  A. Lin,et al.  Phase II Study of Imatinib in Unresectable Hepatocellular Carcinoma , 2008, American journal of clinical oncology.

[25]  Thomas D. Schmittgen,et al.  Association of MicroRNA Expression in Hepatocellular Carcinomas with Hepatitis Infection, Cirrhosis, and Patient Survival , 2008, Clinical Cancer Research.

[26]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[27]  Michael Höpfner,et al.  Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. , 2008, World journal of gastroenterology.

[28]  Peter Schirmacher,et al.  MicroRNA gene expression profile of hepatitis C virus–associated hepatocellular carcinoma , 2007, Hepatology.

[29]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[30]  Xiao-fang Yu,et al.  Microarray analysis of microRNA expression in hepatocellular carcinoma and non‐tumorous tissues without viral hepatitis , 2007, Journal of gastroenterology and hepatology.

[31]  K. Hui,et al.  Identification and Validation of a Novel Gene Signature Associated with the Recurrence of Human Hepatocellular Carcinoma , 2007, Clinical Cancer Research.

[32]  P. Comoglio,et al.  The MET receptor tyrosine kinase in invasion and metastasis , 2007, Journal of cellular physiology.

[33]  George A Calin,et al.  Micro-RNA profiling in kidney and bladder cancers. , 2007, Urologic oncology.

[34]  Giovanni Vanni Frajese,et al.  miR-221 and miR-222 Expression Affects the Proliferation Potential of Human Prostate Carcinoma Cell Lines by Targeting p27Kip1* , 2007, Journal of Biological Chemistry.

[35]  Reuven Agami,et al.  Regulation of the p27Kip1 tumor suppressor by miR‐221 and miR‐222 promotes cancer cell proliferation , 2007 .

[36]  S. Giulini,et al.  In vitro c-met inhibition by antisense RNA and plasmid-based RNAi down-modulates migration and invasion of hepatocellular carcinoma cells. , 2007, International journal of oncology.

[37]  K. Ghoshal,et al.  MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. , 2007, Gastroenterology.

[38]  V. Tarasov,et al.  Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest , 2007, Cell cycle.

[39]  C. Croce,et al.  Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. , 2007, Cancer research.

[40]  Xinping Tan,et al.  Platelet-derived growth factor receptor-α: a novel therapeutic target in human hepatocellular cancer , 2007, Molecular Cancer Therapeutics.

[41]  T. Tammela,et al.  MicroRNA expression profiling in prostate cancer. , 2007, Cancer research.

[42]  H. Huber,et al.  PDGF essentially links TGF-β signaling to nuclear β-catenin accumulation in hepatocellular carcinoma progression , 2007, Oncogene.

[43]  Shuomin Zhu,et al.  MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1)* , 2007, Journal of Biological Chemistry.

[44]  Birgit Samans,et al.  MYCN regulates oncogenic MicroRNAs in neuroblastoma , 2007, International journal of cancer.

[45]  Anindya Dutta,et al.  The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. , 2007, Genes & development.

[46]  Shuomin Zhu,et al.  miR-21-mediated tumor growth , 2007, Oncogene.

[47]  Tobias Schmelzle,et al.  Functional role and oncogene-regulated expression of the BH3-only factor Bmf in mammary epithelial anoikis and morphogenesis , 2007, Proceedings of the National Academy of Sciences.

[48]  I. Fabregat,et al.  Survival and apoptosis: a dysregulated balance in liver cancer , 2007, Liver international : official journal of the International Association for the Study of the Liver.

[49]  C. Benz,et al.  Coordinate Suppression of ERBB2 and ERBB3 by Enforced Expression of Micro-RNA miR-125a or miR-125b* , 2007, Journal of Biological Chemistry.

[50]  George A. Calin,et al.  A MicroRNA Signature of Hypoxia , 2006, Molecular and Cellular Biology.

[51]  T. Ichida,et al.  p16 and p27 are functionally correlated during the progress of hepatocarcinogenesis , 2006, Medical Molecular Morphology.

[52]  S. Wilhelm,et al.  Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. , 2006, Cancer research.

[53]  C. Croce,et al.  MicroRNA signatures in human cancers , 2006, Nature Reviews Cancer.

[54]  K. Ghoshal,et al.  Downregulation of miR‐122 in the rodent and human hepatocellular carcinomas , 2006, Journal of cellular biochemistry.

[55]  S. Thorgeirsson,et al.  Met-regulated expression signature defines a subset of human hepatocellular carcinomas with poor prognosis and aggressive phenotype. , 2006, The Journal of clinical investigation.

[56]  Tushar Patel,et al.  Involvement of human micro-RNA in growth and response to chemotherapy in human cholangiocarcinoma cell lines. , 2006, Gastroenterology.

[57]  C. Croce,et al.  MicroRNA deregulation in human thyroid papillary carcinomas. , 2006, Endocrine-related cancer.

[58]  Y. Akao,et al.  let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. , 2006, Biological & pharmaceutical bulletin.

[59]  T. Okanoue,et al.  Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues , 2006, Oncogene.

[60]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[61]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[62]  J. Zucman‐Rossi,et al.  Genotype–phenotype correlation in hepatocellular adenoma: New classification and relationship with HCC , 2006, Hepatology.

[63]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[64]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[65]  C. Croce,et al.  The role of microRNA genes in papillary thyroid carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[66]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[67]  M. Dobritz,et al.  Pharmacokinetic and Clinical Phase II Trial of Imatinib in Patients with Impaired Liver Function and Advanced Hepatocellular Carcinoma , 2005, Oncology.

[68]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[69]  G. Maira,et al.  Extensive modulation of a set of microRNAs in primary glioblastoma. , 2005, Biochemical and biophysical research communications.

[70]  M. Li‐Weber,et al.  Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL , 2005, Hepatology.

[71]  C. Croce,et al.  MicroRNA gene expression deregulation in human breast cancer. , 2005, Cancer research.

[72]  Jun Qin,et al.  Erk Associates with and Primes GSK-3β for Its Inactivation Resulting in Upregulation of β-Catenin , 2005 .

[73]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[74]  Y. Shiratori,et al.  Altered expression of vascular endothelial growth factor, fibroblast growth factor‐2 and endostatin in patients with hepatocellular carcinoma , 2005, Journal of gastroenterology and hepatology.

[75]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.

[76]  J. Ferlay,et al.  Global Cancer Statistics, 2002 , 2005, CA: a cancer journal for clinicians.

[77]  M. Yeh,et al.  Platelet-derived growth factor C induces liver fibrosis, steatosis, and hepatocellular carcinoma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[78]  D. Häussinger,et al.  Disruption of hepatocellular tight junctions by vascular endothelial growth factor (VEGF): a novel mechanism for tumor invasion. , 2004, Journal of hepatology.

[79]  Shin Ishii,et al.  Molecular-based prediction of early recurrence in hepatocellular carcinoma. , 2004, Journal of hepatology.

[80]  Mijin Yun,et al.  Analysis of gene expression profiles of hepatocellular carcinomas with regard to 18F-fluorodeoxyglucose uptake pattern on positron emission tomography , 2004, European Journal of Nuclear Medicine and Molecular Imaging.

[81]  Takao Ohtsuka,et al.  The negative role of cyclin G in ATM-dependent p53 activation , 2004, Oncogene.

[82]  H. Kinoshita,et al.  CD44 and VEGF expression in extrahepatic metastasis of human hepatocellular carcinoma. , 2004, Hepato-gastroenterology.

[83]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[84]  S. Matsuda,et al.  Prognostic significance of Bcl-xL in human hepatocellular carcinoma. , 2004, Surgery.

[85]  M. Oshimura,et al.  Silencing of imprinted CDKN1C gene expression is associated with loss of CpG and histone H3 lysine 9 methylation at DMR-LIT1 in esophageal cancer , 2004, Oncogene.

[86]  T. Pieler,et al.  Successful treatment of hepatocellular carcinoma with the tyrosine kinase inhibitor imatinib in a patient with liver cirrhosis , 2004, Anti-cancer drugs.

[87]  M. Colombo,et al.  Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. , 2004, Gastroenterology.

[88]  J. Bruix,et al.  Focus on hepatocellular carcinoma. , 2004, Cancer cell.

[89]  W. Birchmeier,et al.  Met, metastasis, motility and more , 2003, Nature Reviews Molecular Cell Biology.

[90]  N. Ragni,et al.  Prognostic value of plasma and serum VEGF levels in patients with resectable hepatocellular carcinoma. , 2003, Annals of surgical oncology.

[91]  C. Junien,et al.  Silencing of CDKN1C (p57KIP2) is associated with hypomethylation at KvDMR1 in Beckwith–Wiedemann syndrome , 2003, Journal of medical genetics.

[92]  M. Manns,et al.  Caspase 8 small interfering RNA prevents acute liver failure in mice , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[93]  H. Yu,et al.  Overexpression of VEGF and Angiopoietin 2: A Key to High Vascularity of Hepatocellular Carcinoma? , 2003, Modern Pathology.

[94]  Katsunori Yoshida,et al.  Distortion of autocrine transforming growth factor β signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells , 2003, Oncogene.

[95]  S. Thorgeirsson,et al.  Reduced hepatic tumor incidence in cyclin G1‐deficient mice , 2003, Hepatology.

[96]  X. Wang,et al.  Predicting hepatitis B virus–positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning , 2003, Nature Medicine.

[97]  Judy Lieberman,et al.  RNA interference targeting Fas protects mice from fulminant hepatitis , 2003, Nature Medicine.

[98]  Roger E Bumgarner,et al.  Identification of novel tumor markers in hepatitis C virus-associated hepatocellular carcinoma. , 2003, Cancer research.

[99]  Jian-hua Xu,et al.  Effect of bax, bcl-2 and bcl-xL on regulating apoptosis in tissues of normal liver and hepatocellular carcinoma. , 2002, World journal of gastroenterology.

[100]  H. Yonemasu,et al.  A possible role of VEGF in osteolytic bone metastasis of hepatocellular carcinoma. , 2002, Journal of experimental & clinical cancer research : CR.

[101]  C. Cohen,et al.  Hepatocellular Carcinoma and Markers of Apoptosis (bcl-2, bax, bcl-x): Prognostic Significance , 2002, Applied immunohistochemistry & molecular morphology : AIMM.

[102]  N. Iizuka,et al.  Comparison of gene expression profiles between hepatitis B virus- and hepatitis C virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. , 2002, Cancer research.

[103]  O. Delpuech,et al.  Identification, using cDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma , 2002, Oncogene.

[104]  S. Thorgeirsson,et al.  Cyclin G recruits PP2A to dephosphorylate Mdm2. , 2002, Molecular cell.

[105]  T. Masaki,et al.  Expression of p57KIP2 in hepatocellular carcinoma: relationship between tumor differentiation and patient survival , 2002 .

[106]  K. Leung,et al.  Construction of the Chinese University Prognostic Index for hepatocellular carcinoma and comparison with the TNM staging system, the Okuda staging system, and the Cancer of the Liver Italian Program staging system , 2002, Cancer.

[107]  K. Helin,et al.  The role of p53 and pRB in apoptosis and cancer. , 2002, Current opinion in genetics & development.

[108]  G. Fu,et al.  Insight into hepatocellular carcinogenesis at transcriptome level by comparing gene expression profiles of hepatocellular carcinoma with those of corresponding noncancerous liver , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[109]  W. Lau,et al.  Decreased expression of Bid in human hepatocellular carcinoma is related to hepatitis B virus X protein. , 2001, European journal of cancer.

[110]  L Pagliaro,et al.  Clinical management of hepatocellular carcinoma. Conclusions of the Barcelona-2000 EASL conference. European Association for the Study of the Liver. , 2001, Journal of hepatology.

[111]  M. Monden,et al.  Expression of p57/Kip2 Protein in Hepatocellular Carcinoma , 2001, Oncology.

[112]  P. Galle,et al.  Apoptosis in liver disease , 2001, Liver international : official journal of the International Association for the Study of the Liver.

[113]  S. Friedman,et al.  Expression and role of Bcl‐xL in human hepatocellular carcinomas , 2001, Hepatology.

[114]  G. Thomas,et al.  Genetic alterations associated with hepatocellular carcinomas define distinct pathways of hepatocarcinogenesis. , 2001, Gastroenterology.

[115]  J. Jang,et al.  Cyclin D1 overexpression in hepatocellular carcinoma. , 2001, Liver.

[116]  A. Tannapfel,et al.  Frequent k- ras -2 mutations and p16INK4Amethylation in hepatocellular carcinomas in workers exposed to vinyl chloride , 2001, British Journal of Cancer.

[117]  T. Tsunoda,et al.  Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: identification of genes involved in viral carcinogenesis and tumor progression. , 2001, Cancer research.

[118]  K. Engeland,et al.  Decreased expression of p27 protein is associated with advanced tumor stage in hepatocellular carcinoma , 2000, International journal of cancer.

[119]  S. Groshen,et al.  Inhibition of metastatic tumor growth in nude mice by portal vein infusions of matrix-targeted retroviral vectors bearing a cytocidal cyclin G1 construct. , 2000, Cancer research.

[120]  Y. Tan,et al.  Downregulation of proapoptotic proteins Bax and Bcl-X(S) in p53 overexpressing hepatocellular carcinomas. , 2000, Biochemical and biophysical research communications.

[121]  C. Croce,et al.  Gain of imprinting at chromosome 11p15: A pathogenetic mechanism identified in human hepatocarcinomas. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[122]  Bernardino,et al.  Prospective validation of the CLIP score: A new prognostic system for patients with cirrhosis and hepatocellular carcinoma , 2000, Hepatology.

[123]  Yusuke Nakamura,et al.  AXIN1 mutations in hepatocellular carcinomas, and growth suppression in cancer cells by virus-mediated transfer of AXIN1 , 2000, Nature Genetics.

[124]  S. Riordan,et al.  Hepatocyte growth factor/scatter factor‐induced intracellular signalling , 2000, International journal of experimental pathology.

[125]  M. Chen,et al.  Activation of p53 tumor suppressor by hepatitis C virus core protein. , 1999, Virology.

[126]  B. Galy,et al.  Hepatocellular hypoxia-induced vascular endothelial growth factor expression and angiogenesis in experimental biliary cirrhosis. , 1999, The American journal of pathology.

[127]  M. Monden,et al.  Expression and prognostic roles of the G1‐S modulators in hepatocellular carcinoma: p27 independently predicts the recurrence , 1999, Hepatology.

[128]  S. Chevret,et al.  A new prognostic classification for predicting survival in patients with hepatocellular carcinoma. Groupe d'Etude et de Traitement du Carcinome Hépatocellulaire. , 1999, Journal of hepatology.

[129]  H. Asakura,et al.  p16INK4 is inactivated by extensive CpG methylation in human hepatocellular carcinoma , 1999 .

[130]  N. Hayashi,et al.  Activation of mitogen‐activated protein kinases/extracellular signal‐regulated kinases in human hepatocellular carcinoma , 1998, Hepatology.

[131]  M. Jensen,et al.  Chromosome localization and structure of the murine cyclin G1 gene promoter sequence. , 1997, Genomics.

[132]  M. Buendia,et al.  Comprehensive allelotyping of human hepatocellular carcinoma , 1997, Oncogene.

[133]  G. Thomas,et al.  Concerted nonsyntenic allelic losses in hyperploid hepatocellular carcinoma as determined by a high-resolution allelotype. , 1997, Cancer research.

[134]  J. Fujimoto,et al.  Expression of hepatocyte growth factor and its receptor c‐met proto‐oncogene in hepatocellular carcinoma , 1997, Hepatology.

[135]  T. Fujita,et al.  Structure and chromosomal assignment of the human cyclin G gene. , 1996, Genomics.

[136]  ndrea,et al.  Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. , 1996, The New England journal of medicine.

[137]  W. Anderson,et al.  Retroviral vector-mediated gene transfer of antisense cyclin G1 (CYCG1) inhibits proliferation of human osteogenic sarcoma cells. , 1995, Cancer research.

[138]  M. Oren,et al.  Identification of p53 target genes through immune selection of genomic DNA: the cyclin G gene contains two distinct p53 binding sites. , 1995, Oncogene.

[139]  M. Fiorentino,et al.  Overexpression of c‐met protooncogene product and raised Ki67 index in hepatocellular carcinomas with respect to benign liver conditions , 1995, Hepatology.

[140]  K. Tanikawa,et al.  Predictive factors for long term prognosis after partial hepatectomy for patients with hepatocellular carcinoma in Japan. The liver cancer study group of japan , 1994, Cancer.

[141]  N. Hayashi,et al.  Expression of the c‐met protooncogene in human hepatocellular carcinoma , 1994, Hepatology.

[142]  D. Beach,et al.  Cyclin G is a transcriptional target of the p53 tumor suppressor protein. , 1994, The EMBO journal.

[143]  P. Gaulard,et al.  Immunohistochemical detection of bcl-2 protein in normal and pathological human liver. , 1994, The American journal of pathology.

[144]  J. Bruix,et al.  c‐met mRNA overexpression in human hepatocellular carcinoma , 1994, Hepatology.

[145]  T. Terada,et al.  Sinusoidal capillarization of human hepatocellular carcinoma: possible promotion by fibroblast growth factor. , 1993, Oncology.

[146]  L. Bolondi,et al.  Natural history of small untreated hepatocellular carcinoma in cirrhosis: A multivariate analysis of prognostic factors of tumor growth rate and patient survival , 1992, Hepatology.

[147]  G. Dusheiko,et al.  Management of hepatocellular carcinoma. , 1992, Journal of hepatology.

[148]  C. Challen,et al.  Infrequent point mutations in codons 12 and 61 of ras oncogenes in human hepatocellular carcinomas. , 1992, Journal of hepatology.

[149]  J. Wands,et al.  Selective G to T mutations of p53 gene in hepatocellular carcinoma from southern Africa , 1991, Nature.

[150]  K. Koike,et al.  Activated N-ras gene was found in human hepatoma tissue but only in a small fraction of the tumor cells. , 1989, Oncogene.

[151]  H. Hasegawa,et al.  Natural history of hepatocellular carcinoma and prognosis in relation to treatment study of 850 patients , 1985, Cancer.

[152]  J. Zucman‐Rossi,et al.  Molecular pathogenesis of focal nodular hyperplasia and hepatocellular adenoma. , 2008, Journal of hepatology.

[153]  J. Bruix,et al.  Novel advancements in the management of hepatocellular carcinoma in 2008. , 2008, Journal of hepatology.

[154]  C. Croce,et al.  MicroRNA signatures in human ovarian cancer. , 2007, Cancer research.

[155]  Sung-Soo Yoon,et al.  Role of hepatocyte growth factor/c-Met signaling in regulating urokinase plasminogen activator on invasiveness in human hepatocellular carcinoma: a potential therapeutic target , 2007, Clinical & Experimental Metastasis.

[156]  H. Huber,et al.  PDGF essentially links TGF-beta signaling to nuclear beta-catenin accumulation in hepatocellular carcinoma progression. , 2007, Oncogene.

[157]  Reuven Agami,et al.  Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. , 2007, The EMBO journal.

[158]  Jun Qin,et al.  Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. , 2005, Molecular cell.

[159]  T. Masaki,et al.  Expression of p57(KIP2) in hepatocellular carcinoma: relationship between tumor differentiation and patient survival. , 2002, International journal of oncology.

[160]  H. Naora,et al.  Requisite role of VEGF receptors in angiogenesis of hepatocellular carcinoma: a comparison with angiopoietin/Tie pathway. , 2002, Anticancer research.

[161]  A. Veronese,et al.  Loss of methylation at chromosome 11p15.5 is common in human adult tumors , 2002, Oncogene.

[162]  A. Behrens,et al.  Inhibition of rabbit keratocyte and human fetal lens epithelial cell proliferation by retrovirus-mediated transfer of antisense cyclin G1 and antisense MAT1 constructs. , 2000, Human gene therapy.

[163]  Katsuhiko Itoh,et al.  Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in hepatomas , 2000, Nature Medicine.

[164]  Bellia Mario,et al.  Prospective validation of the CLIP score, a new prognostic system for cirrhotic patients with hepatocellular carcinoma (RE: Hepatology 2000, 32/3: 679-80) , 2000 .

[165]  H. Asakura,et al.  p16(INK4) is inactivated by extensive CpG methylation in human hepatocellular carcinoma. , 1999, Gastroenterology.

[166]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[167]  A. Wee,et al.  Tumour suppressor p53 and Rb genes in human hepatocellular carcinoma. , 1996, Annals of the Academy of Medicine, Singapore.

[168]  A. Thor,et al.  ras oncogene p21 expression in hepatocellular carcinoma. , 1989, Journal of experimental pathology.

[169]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[170]  N. Iizuka,et al.  MECHANISMS OF DISEASE Mechanisms of disease , 2022 .