Early-Stage Definition of LPX: A Low Power Issue-Execute Processor

We present the high-level microarchitecture of LPX: a low-power issue-execute processor prototype that is being designed by a joint industry-academia research team. LPX implements a very small subset of a RISC architecture, with a primary focus on a vector (SIMD) multimedia extension. The objective of this project is to validate some key new ideas in power-aware microarchitecture techniques, supported by recent advances in circuit design and clocking.

[1]  Andreas Moshovos,et al.  Instruction flow-based front-end throttling for power-aware high-performance processors , 2001, ISLPED '01.

[2]  Rajeev Balasubramonian,et al.  Memory hierarchy reconfiguration for energy and performance in general-purpose processor architectures , 2000, MICRO 33.

[3]  Pong-Fei Lu,et al.  Physical design of a fourth-generation POWER GHz microprocessor , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[4]  Dirk Grunwald,et al.  Confidence estimation for speculation control , 1998, ISCA.

[5]  David M. Brooks,et al.  An Adaptive Issue Queue for Reduced Power at High Performance , 2000, PACS.

[6]  D. Heidel,et al.  Asynchronous interlocked pipelined CMOS circuits operating at 3.3-4.5 GHz , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[7]  Shekhar Y. Borkar,et al.  Design challenges of technology scaling , 1999, IEEE Micro.

[8]  Hunter Scales,et al.  AltiVec Extension to PowerPC Accelerates Media Processing , 2000, IEEE Micro.

[9]  Mike Alexander,et al.  Thermal management system for high performance PowerPC/sup TM/ microprocessors , 1997, Proceedings IEEE COMPCON 97. Digest of Papers.

[10]  Margaret Martonosi,et al.  Wattch: a framework for architectural-level power analysis and optimizations , 2000, Proceedings of 27th International Symposium on Computer Architecture (IEEE Cat. No.RS00201).

[11]  Balaram Sinharoy,et al.  POWER4 system microarchitecture , 2002, IBM J. Res. Dev..

[12]  Margaret Martonosi,et al.  Power-Performance Modeling and Tradeoff Analysis for a High End Microprocessor , 2000, PACS.

[13]  Kanad Ghose,et al.  DYNAMIC ALLOCATION OF DATAPATH RESOURCES FOR LOW POWER , 2001 .

[14]  Pradip Bose,et al.  Synchronous interlocked pipelines , 2002, Proceedings Eighth International Symposium on Asynchronous Circuits and Systems.

[15]  W. Robert Daasch,et al.  TEM2P2EST: A Thermal Enabled Multi-model Power/Performance ESTimator , 2000, PACS.

[16]  Antonio González,et al.  Energy-effective issue logic , 2001, ISCA 2001.

[17]  H. H. Chen,et al.  CPAM: a common power analysis methodology for high-performance VLSI design , 2000, IEEE 9th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No.00TH8524).

[18]  Gary S. Tyson,et al.  Hardware solutions to reduce effective memory access time , 2001 .

[19]  Kaushik Roy,et al.  An Energy-Efficient High-Performance Deep-Submicron Instruction Cache , 2001 .

[20]  Larry L. Biro,et al.  Power considerations in the design of the Alpha 21264 microprocessor , 1998, Proceedings 1998 Design and Automation Conference. 35th DAC. (Cat. No.98CH36175).

[21]  Kazuaki Murakami,et al.  Way-predicting set-associative cache for high performance and low energy consumption , 1999, Proceedings. 1999 International Symposium on Low Power Electronics and Design (Cat. No.99TH8477).

[22]  David H. Albonesi,et al.  Selective cache ways: on-demand cache resource allocation , 1999, MICRO-32. Proceedings of the 32nd Annual ACM/IEEE International Symposium on Microarchitecture.

[23]  James E. Smith,et al.  Saving energy with just in time instruction delivery , 2002, ISLPED '02.

[24]  Dirk Grunwald,et al.  Pipeline gating: speculation control for energy reduction , 1998, ISCA.

[25]  Massoud Pedram,et al.  Low power design methodologies , 1996 .

[26]  David H. Albonesi,et al.  The Inherent Energy Efficiency of Complexity-Adaptive Processors , 1998 .