Geometrization of three manifolds and Perelman’s proof

This is a survey about Thurston’s geometrization conjecture of three manifolds and Perelman’s proof with the Ricci flow. In particular we review the essential contribution of Hamilton as well as some results in topology relevants for the proof.ResumenÉsta es una exposición sobre la conjetura de geometrización de Thurston para variedades tridimensionales, así como de la demostración de Perelman mediante el flujo de Ricci. En particular se revisan la contribución esencial de Hamilton y algunos resultados de topología relevantes para la demostración.

[1]  J. Otal Thurston's Hyperbolization of Haken Manifolds , 1996 .

[2]  S. Yau,et al.  The equivariant Dehn's lemma and loop theorem , 1981 .

[3]  A. Fomenko Geometric variational problems , 1975 .

[4]  Teruhiko Soma The Gromov invariant of links , 1981 .

[5]  Robert F. Riley A quadratic parabolic group , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[6]  H. Seifert,et al.  Topologie Dreidimensionaler Gefaserter Räume , 1933 .

[7]  T. Colding,et al.  Width and finite extinction time of Ricci flow , 2007, 0707.0108.

[8]  Friedhelm Waldhausen,et al.  On irreducible 3-manifolds which are sufficiently large * , 2010 .

[9]  R. Hamilton,et al.  The formations of singularities in the Ricci Flow , 1993 .

[10]  J. Cheeger,et al.  COLLAPSING RIEMANNIAN MANIFOLDS WHILE KEEPING THEIR CURVATURE BOUNDED . II , 2008 .

[11]  G. Fubini Sugli spazii a quattro dimensioni che ammettono un gruppo continuo di movimenti , 1904 .

[12]  John Milnor,et al.  Towards the Poincaré Conjecture and the Classification of 3-Manifolds, Volume 50, Number 10 , 2003 .

[13]  J. Eschenburg Comparison Theorems in Riemannian Geometry , 1994 .

[14]  Mathématiques DE L’I.H.É.S,et al.  Volume and bounded cohomology , 2003 .

[15]  P. Tukia Homeomorphic conjugates of Fuchsian groups. , 1988 .

[16]  Hyperbolic Structures on 3-manifolds, III: Deformations of 3-manifolds with incompressible boundary , 1998, math/9801058.

[17]  D. Jungreis,et al.  Convergence groups and seifert fibered 3-manifolds , 1994 .

[18]  Hellmuth Kneser,et al.  Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. , 1929 .

[19]  J. Munkres Obstructions to the smoothing of piecewise-differentiable homeomorphisms , 1959 .

[20]  R. Hamilton Three-manifolds with positive Ricci curvature , 1982 .

[21]  G. Perelman Finite extinction time for the solutions to the Ricci flow on certain three-manifolds , 2003, math/0307245.

[22]  Robert Myers Simple knots in compact, orientable 3-manifolds , 1982 .

[23]  Reto Müller Differential Harnack inequalities and the Ricci flow , 2006 .

[24]  Curtis T. McMullen,et al.  Minkowski’s Conjecture, Well-Rounded Lattices and Topological Dimension , 2005 .

[25]  W. Thurston The geometry and topology of 3-manifolds , 1979 .

[26]  F. Waldhausen Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. II , 1967 .

[27]  Mathématiques DE L’I.H.É.S,et al.  Quasi-conformal mappings inn-space and the rigidity of hyperbolic space forms , 1968 .

[28]  M. Gromov,et al.  The Classification of Simply Connected Manifolds of Positive Scalar Curvature Author ( s ) : , 2010 .

[29]  W. Thurston Three dimensional manifolds, Kleinian groups and hyperbolic geometry , 1982 .

[30]  Jürgen Jost,et al.  Two-dimensional geometric variational problems , 1991 .

[31]  D. DeTurck Deforming metrics in the direction of their Ricci tensors , 1983 .

[32]  T. Ivey Ricci solitons on compact three-manifolds , 1993 .

[33]  William P. Thurston,et al.  Hyperbolic Structures on 3-manifolds, I: Deformation of acylindrical manifolds , 1986, math/9801019.

[34]  Jean-Pierre Otal Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3 , 1996 .

[35]  Joan Porti,et al.  Geometrization of 3-dimensional orbifolds , 2000 .

[36]  P. Scott,et al.  The geometries of 3-manifolds , 1983 .

[37]  Volume collapsed three-manifolds with a lower curvature bound , 2003, math/0304472.

[38]  J. Whitehead A CERTAIN OPEN MANIFOLD WHOSE GROUP IS UNITY , 1935 .

[39]  R. Hamilton Non-singular solutions of the Ricci flow on three-manifolds , 1999 .

[40]  David Gabai Convergence groups are Fuchsian groups , 1991 .

[41]  Friedhelm Waldhausen,et al.  Eine Klasse von 3-dimensionalen Mannigfaltigkeiten. I , 1967 .

[42]  Iteration on Teichmüller space , 1990 .

[43]  R. Hamilton Four-manifolds with positive curvature operator , 1986 .

[44]  R. H. Bing,et al.  Locally Tame Sets are Tame , 1954 .

[45]  Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman , 2003, math/0308090.

[46]  W. Haken,et al.  Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I , 1962 .

[47]  Bruce Kleiner,et al.  Notes on Perelman's papers , 2006 .

[48]  Peter B. Shalen,et al.  Valuations, Trees, and Degenerations of Hyperbolic Structures, I , 1984 .

[49]  M. Poincaré Cinquième complément à l’Analysis situs , 1904 .

[50]  Huai-Dong Cao,et al.  A Complete Proof of the Poincaré and Geometrization Conjectures - application of the Hamilton-Perelman theory of the Ricci flow , 2006 .

[51]  Surface groups and 3-manifolds which fiber over the circle , 1998, math/9801045.

[52]  Shing-Tung Yau,et al.  Existence of incompressible minimal surfaces and the topology of three - dimensional manifolds with , 1979 .

[53]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[54]  J. Morgan,et al.  Ricci Flow and the Poincare Conjecture , 2006, math/0607607.

[55]  Michael Kapovich,et al.  Hyperbolic Manifolds and Discrete Groups , 2000 .

[56]  Edwin E. Moise,et al.  Affine structures in 3-manifolds, V, The triangulation theorem and Hauptvermutung , 1952 .

[57]  G. Perelman Ricci flow with surgery on three-manifolds , 2003, math/0303109.

[58]  G. Besson,et al.  Weak collapsing and geometrisation of aspherical 3-manifolds , 2007, 0706.2065.

[59]  W. Thurston On the geometry and dynamics of diffeomorphisms of surfaces , 1988 .