A Formal Axiomatization for Alphabet Reasoning with Parametrized Processes

Abstract.In the process-algebraic verification of systems with three or more components put in parallel, alphabet axioms are considered to be useful. These are rules that exploit the information about the alphabets of the processes involved. The alphabet of a process is the set of actions it can perform. In this paper, we extend μCRL (a formal proof system for ACPτ + data) with such axioms. The alphabet axioms that are added to the proof theory are completely formal and therefore highly suited for computer-checked verification. This is new compared to previous papers where the formulation of alphabet axioms relies for a considerable amount on informal data parameters and implicit (infinite) set theory.

[1]  Alex Sellink,et al.  Example Verifications Using Alphabet Axioms , 1998, Formal Aspects of Computing.

[2]  Alex Sellink,et al.  Verifying Process Algebra Proofs in Type Theory , 1993, Semantics of Specification Languages.

[3]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[4]  Jan Friso Groote,et al.  The Syntax and Semantics of μCRL , 1995 .

[5]  J. F. Groote,et al.  Proof Theory for |CRL , 1991 .

[6]  M.P.A. Sellink Transforming an ASF+SDF Specification into a ToolBus Application , 1996 .

[7]  Jan A. Bergstra,et al.  Network algebra with demonic relation operators , 1995 .

[8]  C. A. R. Hoare,et al.  Laws of programming , 1987, CACM.

[9]  Eelco Visser,et al.  Generation of formatters for context-free languages , 1996, TSEM.

[10]  Eelco Visser,et al.  A Case Study in Optimizing Parsing Schemata by Disambiguation Filters , 1997, IWPT.

[11]  T. B. Dinesh,et al.  Asf+Sdf'95: a workshop on Generating Tools from Algebraic Specifications , 1995 .

[12]  Jan A. Bergstra,et al.  Sequential data algebra primitives , 1996 .

[13]  Paul Klint,et al.  Core Technologies for System Renovation , 1996, SOFSEM.

[14]  Chris Verhoef,et al.  A General Conservative Extension Theorem in Process Algebra , 1994, PROCOMET.

[15]  Eelco Visser Solving type equations in multi-level specifications (preliminary version) , 1996 .

[16]  P. A. Olivier,et al.  Embedded system simulation: testdriving the ToolBus , 1996 .

[17]  T. B. Dinesh,et al.  Specifying Input and Output of Visual Languages , 1996 .

[18]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.

[19]  Jan A. Bergstra,et al.  The Discrete Time TOOLBUS , 1996, AMAST.

[20]  P. I. Manuel,et al.  ANSI Cobol III in SDF + an ASF Definition of a Y2K Tool , 1996 .

[21]  H. P. Korver,et al.  A well-formedness checker for ?CRL , 1995 .

[22]  Jan A. Bergstra,et al.  Frame-based process logics , 1995 .

[23]  J. M. T. Romijn Automatic analysis of term rewriting systems: proving properties of term rewriting systems derived from ASF+SDF specifications , 1995 .

[24]  Paul Klint,et al.  Re-engineering needs generic programming language technology , 1997, SIGP.

[25]  Jan A. Bergstra,et al.  Sequential data algebra primitives (revised version of P9602) , 1996 .

[26]  J. J. Brunekreef A transformation tool for pure Prolog programs: the algebraic specification , 1996 .

[27]  Jan Friso Groote,et al.  Proof Theory for µCRL: A Language for Processes with Data , 1993, Semantics of Specification Languages.

[28]  P. Klint,et al.  Reverse engineering and system renovation—an annotated bibliography , 1997, SOEN.

[29]  Jos van Wamel Process Algebra with Language Matching , 1997, Theor. Comput. Sci..

[30]  M.P.A. Sellink Computer-Aided Verification of Protocols: the Type Theoretic Approach , 1996 .

[31]  Jan A. Bergstra,et al.  Discrete time process algebra (revised version of P9208b) , 1995 .

[32]  Jan A. Bergstra,et al.  Process Algebra with Signals and Conditions , 1990 .

[33]  Jan A. Bergstra,et al.  Algebra of Communicating Processes with Abstraction , 1985, Theor. Comput. Sci..

[34]  Jan A. Bergstra,et al.  Grid protocols based on synchronous communication: specification and correctness , 1995 .

[35]  Jan A. Bergstra,et al.  Network algebra for synchronous and asynchronous dataflow , 1994 .

[36]  Alex Sellink On the Conservativity of Leibniz Equality , 1998, Int. J. Found. Comput. Sci..

[37]  Jan Springintveld,et al.  A Computer-Checked Verification of Milner's Scheduler , 1993, TACS.

[38]  L.M.F. Moonen,et al.  Data Flow Analysis for Reverse Engineering , 1996 .

[39]  Jan Friso Groote,et al.  Invariants in Process Algebra with Data , 1993, CONCUR.

[40]  J. Brunekreef,et al.  TransLog, an interactive tool for transformation of logic programs , 1995 .

[41]  Jan A. Bergstra,et al.  Conditional axioms and α/β-calculus in process algebra , 1987, Formal Description of Programming Concepts.

[42]  Jan Friso Groote,et al.  A Bounded Retransmission Protocol for Large Data Packets , 1993, AMAST.