An effective method to reduce residual lithium compounds on Ni-rich Li[Ni0.6Co0.2Mn0.2]O2 active material using a phosphoric acid derived Li3PO4 nanolayer

[1]  Richard T. Haasch,et al.  Improving high-capacity Li1.2Ni0.15Mn0.55Co0.1O2-based lithium-ion cells by modifiying the positive electrode with alumina , 2013 .

[2]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[3]  Woo-Sung Jung,et al.  Study on CO2 Adsorption on LiOH-Modified Al2O3 , 2013 .

[4]  Clare P. Grey,et al.  Structure of aluminum fluoride coated Li[Li1/9Ni1/3Mn5/9]O2 cathodes for secondary lithium-ion batteries , 2012 .

[5]  Yang‐Kook Sun,et al.  Ni3(PO4)2-coated Li[Ni0.8Co0.15Al0.05]O2 lithium battery electrode with improved cycling performance at 55 °C , 2011 .

[6]  K. Amine,et al.  Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries , 2010 .

[7]  B. Scrosati,et al.  Lithium batteries: Status, prospects and future , 2010 .

[8]  K. Amine,et al.  Effect of AlF3 Coating on Thermal Behavior of Chemically Delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2 , 2010 .

[9]  Y. Shao-horn,et al.  Probing the Origin of Enhanced Stability of AlPO4 Nanoparticle Coated LiCoO2 during Cycling to High Voltages: Combined XRD and XPS Studies , 2009 .

[10]  Yang‐Kook Sun,et al.  Improvement of electrochemical and thermal properties of Li[Ni0.8Co0.1Mn0.1]O2 positive electrode materials by multiple metal (Al, Mg) substitution , 2009 .

[11]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[12]  K. Amine,et al.  Dual functioned BiOF-coated Li[Li0.1Al0.05Mn1.85]O4 for lithium batteries , 2009 .

[13]  Min Gyu Kim,et al.  Storage Characteristics of LiNi0.8Co0.1 + x Mn0.1 − x O2 (x = 0 , 0.03, and 0.06) Cathode Materials for Lithium Batteries , 2008 .

[14]  Rémi Dedryvère,et al.  XPS Study on Al2O3- and AlPO4-Coated LiCoO2 Cathode Material for High-Capacity Li Ion Batteries , 2007 .

[15]  Jaephil Cho,et al.  Microstructure of LiCoO2 with and without “AlPO4” Nanoparticle Coating: Combined STEM and XPS Studies , 2007 .

[16]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[17]  K. Amine,et al.  Structural and Electrochemical Properties of Layered Li[Ni1-2xCoxMnx]O2 (x = 0.1 - 0.3) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[18]  H. Bang,et al.  Functionality of oxide coating for Li [Li0.05Ni0.4Co0.15Mn0.4]O2 as positive electrode materials for lithium-ion secondary batteries , 2007 .

[19]  G. Amatucci,et al.  High-power nanostructured LiMn2-xNixO4 high-voltage lithium-ion battery electrode materials : Electrochemical impact of electronic conductivity and morphology , 2006 .

[20]  Yang‐Kook Sun,et al.  Improvement of High-Voltage Cycling Behavior of Surface-Modified Li [ Ni1 ∕ 3Co1 ∕ 3Mn1 ∕ 3 ] O2 Cathodes by Fluorine Substitution for Li-Ion Batteries , 2005 .

[21]  J. Duh,et al.  Effect of Mn Content on the Microstructure and Electrochemical Performance of LiNi0.75 − x Co0.25Mn x O2 Cathode Materials , 2005 .

[22]  Seung‐Taek Myung,et al.  Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries , 2005 .

[23]  Seung‐Taek Myung,et al.  Synthesis of LiNi0.5Mn0.5-xTixO2 by an Emulsion Drying Method and Effect of Ti on Structure and Electrochemical Properties , 2005 .

[24]  Yang‐Kook Sun,et al.  Synthetic optimization of Li[Ni 1/3Co 1/3Mn 1/3]O 2 via co-precipitation , 2004 .

[25]  J. Prakash,et al.  Synthesis and Electrochemical Properties of Li [ Ni1 / 3Co1 / 3Mn ( 1 / 3 − x ) Mg x ] O 2 − y F y via Coprecipitation , 2004 .

[26]  Kristina Edström,et al.  The cathode-electrolyte interface in the Li-ion battery , 2004 .

[27]  Junwei Jiang,et al.  ARC studies of the reaction between Li0FePO4 and LiPF6 or LiBOB EC/DEC electrolytes , 2004 .

[28]  G. L. Henriksen,et al.  Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries , 2004 .

[29]  J. Dahn,et al.  Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V , 2004 .

[30]  M. Ue,et al.  Decomposition of LiPF6 and Stability of PF5 in Li-Ion Battery Electrolytes. Density Functional Theory and Molecular Dynamics Studies. , 2004 .

[31]  Shinichiro Nakamura,et al.  Decomposition of LiPF6and Stability of PF 5 in Li-Ion Battery Electrolytes Density Functional Theory and Molecular Dynamics Studies , 2003 .

[32]  Ilias Belharouak,et al.  Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications , 2003 .

[33]  J. Kerr,et al.  Chemical reactivity of PF{sub 5} and LiPF{sub 6} in ethylene carbonate/dimethyl carbonate solutions , 2001 .

[34]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[35]  J. Dahn,et al.  Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2 , 1992 .

[36]  D. Aurbach The Electrochemical Behavior of Lithium Salt Solutions of γ‐Butyrolactone with Noble Metal Electrodes , 1989 .

[37]  Yang‐Kook Sun,et al.  Effect of Residual Lithium Compounds on Layer Ni-Rich Li[Ni0.7Mn0.3]O2 , 2014 .

[38]  Robert Kostecki,et al.  The mechanism of HF formation in LiPF6-based organic carbonate electrolytes , 2012 .

[39]  D. Aurbacha,et al.  On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries , 1999 .

[40]  D. Aurbach,et al.  On the Electroanalytical Characterization of Li x CoO 2 , Li x NiO 2 and LiMn 2 O 4 (Spinel) Electrodes in Repeated Lithium Intercalation-Deintercalation Processes , 1997 .

[41]  Lisa C. Klein,et al.  Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries , 1996 .

[42]  M. Cohn Phosphate-water exchange reaction catalyzed by inorganic pyrophosphatase of yeast. , 1958, The Journal of biological chemistry.