A Defensive Marginal Particle Filtering Method for Data Assimilation

Particle filtering (PF) is an often used method to estimate the states of dynamical systems. A major limitation of the standard PF method is that the dimensionality of the state space increases as the time proceeds and eventually may cause degeneracy of the algorithm. A possible approach to alleviate the degeneracy issue is to compute the marginal posterior distribution at each time step, which leads to the so-called marginal PF method. A key issue in the marginal PF method is to construct a good sampling distribution in the marginal space. When the posterior distribution is close to Gaussian, the Ensemble Kalman filter (EnKF) method can usually provide a good sampling distribution; however the EnKF approximation may fail completely when the posterior is strongly non-Gaussian. In this work we propose a defensive marginal PF (DMPF) algorithm which constructs a sampling distribution in the marginal space by combining the standard PF and the EnKF approximation using a multiple importance sampling (MIS) scheme. An important feature of the proposed algorithm is that it can automatically adjust the relative weight of the PF and the EnKF components in the MIS scheme in each step, according to how non-Gaussian the posterior is. With numerical examples we demonstrate that the proposed method can perform well regardless of whether the posteriors can be well approximated by Gaussian.

[1]  Dongbin Xiu,et al.  A generalized polynomial chaos based ensemble Kalman filter with high accuracy , 2009, J. Comput. Phys..

[2]  Guang Lin,et al.  An adaptive ANOVA-based PCKF for high-dimensional nonlinear inverse modeling , 2014, J. Comput. Phys..

[3]  Yan Zhou,et al.  Multilevel Particle Filters , 2015, SIAM J. Numer. Anal..

[4]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[5]  T. Hesterberg,et al.  Weighted Average Importance Sampling and Defensive Mixture Distributions , 1995 .

[6]  N. Papadakis,et al.  Data assimilation with the weighted ensemble Kalman filter , 2010 .

[7]  M. Ghil,et al.  Data assimilation in meteorology and oceanography , 1991 .

[8]  Matthias Morzfeld,et al.  What the collapse of the ensemble Kalman filter tells us about particle filters , 2015, 1512.03720.

[9]  A. Doucet,et al.  A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .

[10]  Jean-Marie Cornuet,et al.  Adaptive Multiple Importance Sampling , 2009, 0907.1254.

[11]  G. Evensen Data Assimilation: The Ensemble Kalman Filter , 2006 .

[12]  Arnaud Doucet,et al.  Particle methods for optimal filter derivative: application to parameter estimation , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[13]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[14]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[15]  Nando de Freitas,et al.  Toward Practical N2 Monte Carlo: the Marginal Particle Filter , 2005, UAI.

[16]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[17]  K. Ide,et al.  A Method for Assimilation of Lagrangian Data , 2003 .

[18]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[19]  K. Ide,et al.  A Method for Assimilating Lagrangian Data into a Shallow-Water-Equation Ocean Model , 2006 .

[20]  Nando de Freitas,et al.  Analysis of Particle Methods for Simultaneous Robot Localization and Mapping and a New Algorithm: Marginal-SLAM , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[21]  Tiangang Cui,et al.  On dimension reduction in Gaussian filters , 2015, 1508.06452.

[22]  D. Nychka Data Assimilation” , 2006 .

[23]  Paul Zarchan,et al.  Fundamentals of Kalman Filtering: A Practical Approach , 2001 .

[24]  A. Stordal,et al.  Bridging the ensemble Kalman filter and particle filters: the adaptive Gaussian mixture filter , 2011 .

[25]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[26]  Chris Snyder,et al.  Toward a nonlinear ensemble filter for high‐dimensional systems , 2003 .

[27]  A. Stuart,et al.  Sampling the posterior: An approach to non-Gaussian data assimilation , 2007 .

[28]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[29]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[30]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[31]  H. Kunsch,et al.  Bridging the ensemble Kalman and particle filters , 2012, 1208.0463.

[32]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[33]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[34]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .