Soil moisture retrieval from AMSR-E

The Advanced Microwave Scanning Radiometer (AMSR-E) on the Earth Observing System (EOS) Aqua satellite was launched on May 4, 2002. The AMSR-E instrument provides a potentially improved soil moisture sensing capability over previous spaceborne radiometers such as the Scanning Multichannel Microwave Radiometer and Special Sensor Microwave/Imager due to its combination of low frequency and higher spatial resolution (approximately 60 km at 6.9 GHz). The AMSR-E soil moisture retrieval approach and its implementation are described in this paper. A postlaunch validation program is in progress that will provide evaluations of the retrieved soil moisture and enable improved hydrologic applications of the data. Key aspects of the validation program include assessments of the effects on retrieved soil moisture of variability in vegetation water content, surface temperature, and spatial heterogeneity. Examples of AMSR-E brightness temperature observations over land are shown from the first few months of instrument operation, indicating general features of global vegetation and soil moisture variability. The AMSR-E sensor calibration and extent of radio frequency interference are currently being assessed, to be followed by quantitative assessments of the soil moisture retrievals.

[1]  Scott A. Isard,et al.  A Soil Moisture Climatology of Illinois , 1994 .

[2]  Yann Kerr,et al.  A simple parameterization of the L-band microwave emission from rough agricultural soils , 2001, IEEE Trans. Geosci. Remote. Sens..

[3]  T. Jackson,et al.  III. Measuring surface soil moisture using passive microwave remote sensing , 1993 .

[4]  Heather McNairn,et al.  First order surface roughness correction of active microwave observations for estimating soil moisture , 1997, IEEE Trans. Geosci. Remote. Sens..

[5]  Michael D. Eilts,et al.  The Oklahoma Mesonet: A Technical Overview , 1995 .

[6]  Bhaskar J. Choudhury,et al.  Estimating soil wetness using satellite data , 1988 .

[7]  B. Choudhury,et al.  Remote sensing of soil moisture content over bare field at 1.4 GHz frequency , 1981 .

[8]  Fuzhong Weng,et al.  An eight-year (1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements , 1996 .

[9]  James R. Wang Passive microwave sensing of soil moisture content: The effects of soil bulk density and surface roughness , 1983 .

[10]  Thomas J. Jackson,et al.  meeting summary: GEWEX/BAHC International Workshop on Soil Moisture Monitoring, Analysis, and Prediction for Hydrometeorological and Hydroclimatological Applications , 2001 .

[11]  David G. Long,et al.  Spatial resolution enhancement of SSM/I data , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  T. Mo,et al.  A model for microwave emission from vegetation‐covered fields , 1982 .

[13]  Leung Tsang,et al.  A prototype AMSR-E global snow area and snow depth algorithm , 2003, IEEE Trans. Geosci. Remote. Sens..

[14]  Keiji Imaoka,et al.  The Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E), NASDA's contribution to the EOS for global energy and water cycle studies , 2003, IEEE Trans. Geosci. Remote. Sens..

[15]  Simonetta Paloscia,et al.  Retrieval of Soil Moisture From AMSR Data , 1999 .

[16]  Emanuele Santi,et al.  A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I satellites , 2001, IEEE Trans. Geosci. Remote. Sens..

[17]  N. Bruguier,et al.  A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields , 1995 .

[18]  Thomas J. Jackson,et al.  Soil moisture and TRMM microwave imager relationships in the Southern Great Plains 1999 (SGP99) experiment , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  Dara Entekhabi,et al.  Estimation of soil-type heterogeneity effects in the retrieval of soil moisture from radiobrightness , 2000, IEEE Trans. Geosci. Remote. Sens..

[20]  Yuei-An Liou,et al.  Retrieving soil moisture from simulated brightness temperatures by a neural network , 2001, IEEE Trans. Geosci. Remote. Sens..

[21]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[22]  Y. Kerr,et al.  A semiempirical model for interpreting microwave emission from semiarid land surfaces as seen from space , 1990 .

[23]  A. Robock,et al.  The Global Soil Moisture Data Bank , 2000 .

[24]  Wade T. Crow,et al.  An observation system simulation experiment for the impact of land surface heterogeneity on AMSR-E soil moisture retrieval , 2001, IEEE Trans. Geosci. Remote. Sens..

[25]  G. A. Poe,et al.  Optimum interpolation of imaging microwave radiometer data , 1990 .

[26]  Qin Li,et al.  Application of physics-based two-grid method and sparse matrix canonical grid method for numerical simulations of emissivities of soils with rough surfaces at microwave frequencies , 2000, IEEE Trans. Geosci. Remote. Sens..

[27]  B. Choudhury,et al.  Investigation of effect of heterogeneities in vegetation and rainfall on simulated SSM/I brightness temperatures , 1997 .

[28]  James R. Wang Effect of vegetation on soil moisture sensing observed from orbiting microwave radiometers , 1985 .

[29]  A. Robock,et al.  Satellite remote sensing of soil moisture in Illinois, United States , 1999 .

[30]  Jenq-Neng Hwang,et al.  Solving inverse problems by Bayesian iterative inversion of a forward model with applications to parameter mapping using SMMR remote sensing data , 1995, IEEE Trans. Geosci. Remote. Sens..

[31]  T. Schmugge,et al.  An Empirical Model for the Complex Dielectric Permittivity of Soils as a Function of Water Content , 1980, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Frank J. Wentz,et al.  Algorithm Theoretical Basis Document (ATBD) AMSR Level 2A Algorithm , 2000 .

[33]  N. U. Ahmed,et al.  Estimating soil moisture from 6·6 GHz dual polarization, and/or satellite derived vegetation index , 1995 .

[34]  T. Zhang,et al.  Soil freeze/thaw cycles over snow‐free land detected by passive microwave remote sensing , 2001 .

[35]  Li Li,et al.  Retrieval of land surface parameters using passive microwave measurements at 6-18 GHz , 1999, IEEE Trans. Geosci. Remote. Sens..

[36]  David M. Le Vine,et al.  Dependence of attenuation in a vegetation canopy on frequency and plant water content , 1996, IEEE Trans. Geosci. Remote. Sens..

[37]  Christian Kummerow,et al.  NASDARainfall algorithms for AMSR-E , 2003, IEEE Trans. Geosci. Remote. Sens..

[38]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[39]  Jeffrey P. Walker,et al.  A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index , 2001, IEEE Trans. Geosci. Remote. Sens..

[40]  Thomas J. Jackson,et al.  Soil moisture retrieval using the C-band polarimetric scanning radiometer during the Southern Great Plains 1999 Experiment , 2002, IEEE Trans. Geosci. Remote. Sens..

[41]  Manfred Owe,et al.  Surface moisture and satellite microwave observations in semiarid southern Africa , 1992 .

[42]  W. Oechel,et al.  FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities , 2001 .

[43]  F. Ulaby,et al.  Microwave Dielectric Behavior of Wet Soil-Part II: Dielectric Mixing Models , 1985, IEEE Transactions on Geoscience and Remote Sensing.

[44]  Keiji Imaoka,et al.  AMSR/AMSR-E level 2 and 3 algorithm developments and data validation plans of NASDA , 2003, IEEE Trans. Geosci. Remote. Sens..

[45]  Jesslyn F. Brown,et al.  Development of a land-cover characteristics database for the conterminous U.S. , 1991 .

[46]  C. Carter,et al.  Meeting summary , 1989, Schizophrenia Research.