Extremal solutions and instantaneous complete blow-up for elliptic and parabolic problems

whenever g > 0 is increasing and convex on R and superlinear at +∞ in the sense (7) stated below. Under these assumptions, the extremal parameter of (2) satisfies 0 < λ∗ < ∞. Here and throughout the paper, Ω is a smooth bounded domain of R . For each 0 ≤ λ < λ∗, the minimal solution of (2) is classical. Their limit as λ ↑ λ∗ is the extremal solution u∗ and it may be singular (i.e. unbounded) for some nonlinearities and domains. When g(u) = e, it is known that u∗ ∈ L∞(Ω) if N ≤ 9 (for every Ω), while u∗(x) = log(1/|x|) if N ≥ 10 and Ω = B1. Brezis and Vázquez [BV] raised the question of determining the

[1]  Xavier Cabré,et al.  Weak Eigenfunctions for the Linearization of Extremal Elliptic Problems , 1998 .

[2]  Nonlinear equations and weighted norm inequalities , 1997, math/9709212.

[3]  X. Cabré,et al.  Stable solutions of semilinear elliptic problems in convex domains , 1998 .

[4]  E. Davies THE HARDY CONSTANT , 1995 .

[5]  Fulbert Mignot,et al.  Sur une classe de problemes non lineaires avec non linearite positive, croissante, convexe. , 1980 .

[6]  Haim Brezis,et al.  Semi-linear second-order elliptic equations in L 1 , 1973 .

[7]  Juan Luis Vázquez,et al.  Domain of existence and blowup for the exponential reaction-diffusion equation , 1999 .

[8]  D. Joseph,et al.  Quasilinear Dirichlet problems driven by positive sources , 1973 .

[9]  James P. Keener,et al.  Positive solutions of convex nonlinear eigenvalue problems , 1974 .

[10]  Haim Brezis,et al.  Hardy's inequalities revisited , 1997 .

[11]  Michael G. Crandall,et al.  Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems , 1975 .

[12]  Jerome A. Goldstein,et al.  THE HEAT EQUATION WITH A SINGULAR POTENTIAL , 1984 .

[13]  Haim Brezis,et al.  Positive solutions of nonlinear elliptic equations involving critical sobolev exponents , 1983 .

[14]  M. Pierre,et al.  Singularités éliminables pour des équations semi-linéaires , 1984 .

[15]  J.-P. Puel,et al.  Quelques résultats sur le problème-Δu=λeu , 1988 .

[16]  L. Boccardo,et al.  A Dirichlet problem involving critical exponents , 1995 .

[17]  G. Nedev Regularity of the extremal solution of semilinear elliptic equations , 2000 .

[18]  Yvan Martel,et al.  Complete blow up and global behaviour of solutions of ut - Δu = g(u) , 1998 .

[19]  Haim Brezis,et al.  Blow-up solutions of some nonlinear elliptic problems , 1997 .

[20]  X. Cabré,et al.  Regularity of radial minimizers and extremal solutions of semilinear elliptic equations , 2006 .

[21]  I. M. Gel'fand,et al.  Some problems in the theory of quasilinear equations , 1987 .

[22]  H. Brezis,et al.  Some simple nonlinear PDE's without solutions , 1998 .

[23]  J. Puel,et al.  Quasilinear problems with exponential growth in the reaction term , 1994 .

[24]  J. Vázquez,et al.  The Hardy Inequality and the Asymptotic Behaviour of the Heat Equation with an Inverse-Square Potential , 2000 .

[25]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[26]  Haim Brezis,et al.  Combined Effects of Concave and Convex Nonlinearities in Some Elliptic Problems , 1994 .

[27]  Haim Brezis,et al.  Blow up for $u_t-\Delta u=g(u)$ revisited , 1996, Advances in Differential Equations.

[28]  J. García Azorero,et al.  Hardy Inequalities and Some Critical Elliptic and Parabolic Problems , 1998 .

[29]  P Baras,et al.  Complete blow-up after Tmax for the solution of a semilinear heat equation , 1987 .

[30]  T. Cazenave,et al.  BLOW UP FOR u, -b,.u = g(u) REVISITED , 2005 .

[31]  J. Vázquez,et al.  On the stability or instability of the singular solution of the semilinear heat equation with exponential reaction term , 1995 .

[32]  X. Cabré,et al.  On the stability of radial solutions of semilinear elliptic equations in all of Rn , 2004 .

[33]  P. Majer,et al.  Truncation of nonlinearities in some supercritical elliptic problems , 1996 .