Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization

This paper has been withdrawn due to a critical error near equation (71). This error causes the entire argument of the paper to collapse. Emmanuel Candes of Stanford discovered the error, and has suggested a correct analysis, which will be reported in a separate publication.

[1]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[2]  Bell Telephone,et al.  ROBUST ESTIMATES, RESIDUALS, AND OUTLIER DETECTION WITH MULTIRESPONSE DATA , 1972 .

[3]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[4]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[5]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[6]  Edoardo Amaldi,et al.  On the Approximability of Minimizing Nonzero Variables or Unsatisfied Relations in Linear Systems , 1998, Theor. Comput. Sci..

[7]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[8]  Gregory Piatetsky-Shapiro,et al.  High-Dimensional Data Analysis: The Curses and Blessings of Dimensionality , 2000 .

[9]  M. Ledoux The concentration of measure phenomenon , 2001 .

[10]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Ronen Basri,et al.  Lambertian reflectance and linear subspaces , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  Y. Chikuse Statistics on special manifolds , 2003 .

[13]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[14]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[15]  Michael J. Black,et al.  A Framework for Robust Subspace Learning , 2003, International Journal of Computer Vision.

[16]  B. Ripley,et al.  Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.

[17]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[18]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[19]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[20]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[21]  D. Donoho For most large underdetermined systems of linear equations the minimal 𝓁1‐norm solution is also the sparsest solution , 2006 .

[22]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[23]  Dan Suciu,et al.  Journal of the ACM , 2006 .

[24]  Yin Zhang,et al.  Fixed-Point Continuation for l1-Minimization: Methodology and Convergence , 2008, SIAM J. Optim..

[25]  Volkan Cevher,et al.  Sparse Signal Recovery Using Markov Random Fields , 2008, NIPS.

[26]  R. Vershynin Spectral norm of products of random and deterministic matrices , 2008, 0812.2432.

[27]  Yoram Bresler,et al.  Efficient and guaranteed rank minimization by atomic decomposition , 2009, 2009 IEEE International Symposium on Information Theory.

[28]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[29]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[30]  A. Willsky,et al.  Sparse and low-rank matrix decompositions , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[31]  S. Yun,et al.  An accelerated proximal gradient algorithm for nuclear norm regularized linear least squares problems , 2009 .

[32]  John Wright,et al.  Dense Error Correction via L1-Minimization , 2008, 0809.0199.

[33]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[34]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[35]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[36]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[37]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[38]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[39]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[40]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[41]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.