Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets.

The supramolecular nanoarchitectures, C(60)/ferrocene nanosheets, were prepared by a simple liquid-liquid interfacial precipitation method and fully characterized by means of SEM, STEM, HRTEM, XRD, Raman and UV-vis-NIR spectra. The highly crystallized C(60)/ferrocene hexagonal nanosheets had a size of ca. 9 microm and the formulation C(60)(ferrocene)(2). A strong charge-transfer (CT) band between ferrocene and C(60) was observed at 782 nm, indicating the presence of donor-acceptor interaction in the nanosheets. Upon heating the nanosheets to 150 degrees C, the CT band disappeared due to the sublimation of ferrocene from the C(60)/ferrocene hybrid, and C(60) nanosheets with an fcc crystal structure and the same shape and size as the C(60)/ferrocene nanosheets were obtained.

[1]  D. Guldi,et al.  Uniquely shaped double-decker buckyferrocenes--distinct electron donor-acceptor interactions. , 2008, Journal of the American Chemical Society.

[2]  K. Miyazawa,et al.  ORGANIC-METAL-DOPED FULLERENE NANOWHISKERS , 2008 .

[3]  Wuzong Zhou,et al.  Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires. , 2008, Journal of the American Chemical Society.

[4]  S. Iijima,et al.  Nanorods of endohedral metallofullerene derivative. , 2008, Journal of the American Chemical Society.

[5]  Katsuhiko Ariga,et al.  Flower-shaped supramolecular assemblies: hierarchical organization of a fullerene bearing long aliphatic chains. , 2007, Small.

[6]  M. Sathish,et al.  Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface. , 2007, Journal of the American Chemical Society.

[7]  G. Zou,et al.  Synthesis and high pressure induced amorphization of C60 nanosheets , 2007 .

[8]  Sudip Malik,et al.  Creation of 1D [60]fullerene superstructures and its polymerization by γ-ray irradiation , 2007 .

[9]  O. Sugino,et al.  Average excitation energies from time-dependent density functional response theory. , 2007, The Journal of chemical physics.

[10]  O. Sugino,et al.  Modified linear response for time-dependent density-functional theory: Application to Rydberg and charge-transfer excitations , 2006 .

[11]  S. R. Silva,et al.  Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis route , 2006 .

[12]  G. Zou,et al.  Synthesis of Thin, Rectangular C60 Nanorods Using m‐Xylene as a Shape Controller , 2006 .

[13]  E. Nakamura,et al.  Synthesis and structural, electrochemical, and stacking properties of conical molecules possessing buckyferrocene on the apex. , 2006, Journal of the American Chemical Society.

[14]  G. M. Aminur Rahman,et al.  Sharing orbitals: ultrafast excited state deactivations with different outcomes in bucky ferrocenes and ruthenocenes. , 2006, Journal of the American Chemical Society.

[15]  T. Suga,et al.  Structural investigation of heat-treated fullerene nanotubes and nanowhiskers , 2006 .

[16]  M. Hulman,et al.  Raman spectroscopy of fullerenes and fullerene–nanotube composites , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[17]  M. Prato,et al.  Liquid-crystalline fullerene-ferrocene dyads , 2004 .

[18]  T. Suga,et al.  Structural investigation of the C_60/C_70 whiskers fabricated by forming liquid–liquid interfaces of toluene with dissolved C_60/C_70 and isopropyl alcohol , 2003 .

[19]  Matthieu Verstraete,et al.  First-principles computation of material properties: the ABINIT software project , 2002 .

[20]  Lei Jiang,et al.  Imaging as-grown [60]fullerene nanotubes by template technique. , 2002, Journal of the American Chemical Society.

[21]  A. Hirsch,et al.  Evidence of pronounced electronic coupling in a directly bonded fullerene--ferrocene dyad. , 2002, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Kun'ichi Miyazawa,et al.  C_60 Nanowhiskers Formed by the Liquid–liquid Interfacial Precipitation Method , 2002 .

[23]  M. Prato,et al.  A mixed fullerene-ferrocene thermotropic liquid crystal: synthesis, liquid-crystalline properties, supramolecular organization and photoinduced electron transfer. , 2001, Chemistry.

[24]  R. Lyubovskaya,et al.  Energies of charge transfer for C60 and C70 complexes in solutions and in the solid state , 1999 .

[25]  Y. Chabre,et al.  Effect of Stacking Disorder on the Orientational Ordering Transition of Solid C60 , 1995 .

[26]  Z. Klusek,et al.  Sharp anomalies in the scanning tunneling microscope I–V characteristics at room temperature , 1995 .

[27]  Tokuko. Watanabe,et al.  ESR spectra on single crystals of alkali metal fulleride complexes by means of wet-chemical synthesis , 1995 .

[28]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[29]  F. Masin,et al.  Phase equilibria in the C60 + ferrocene system and solid-state studies of the C60.2Ferrocene solvate , 2002 .

[30]  E. I. Yudanova,et al.  Donor–acceptor complexes of fullerene C60 with organic and organometallic donors , 2000 .

[31]  F. Wudl,et al.  Lattice structure of the fullerene ferromagnet TDAE–C60 , 1992, Nature.

[32]  J. D. Crane,et al.  Preparation and characterisation of C60(ferrocene)2 , 1992 .