Cardiac magnetic resonance imaging of rapid VCAM-1 up-regulation in myocardial ischemia–reperfusion injury

[1]  I. Y. Chen,et al.  Cardiovascular molecular imaging: focus on clinical translation. , 2011, Circulation.

[2]  A. Dart,et al.  Evidence for an Acute Diffuse Fibrotic Response Throughout the Left Ventricle Following Acute Myocardial Infarction , 2011 .

[3]  Jurgen E. Schneider,et al.  In Vivo Quantification of Vcam-1 Expression in Renal Ischemia Reperfusion Injury Using Non-Invasive Magnetic Resonance Molecular Imaging , 2010, PloS one.

[4]  K. J. Brooks,et al.  Molecular Magnetic Resonance Imaging of Acute Vascular Cell Adhesion Molecule-1 Expression in a Mouse Model of Cerebral Ischemia , 2010, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[5]  R. Choudhury,et al.  An approach to molecular imaging of atherosclerosis, thrombosis, and vascular inflammation using microparticles of iron oxide☆ , 2010, Atherosclerosis.

[6]  G. Dai,et al.  Molecular MRI Detects Low Levels of Cardiomyocyte Apoptosis in a Transgenic Model of Chronic Heart Failure , 2009, Circulation. Cardiovascular imaging.

[7]  G. Dai,et al.  Abstract 593: Molecular MRI of Cardiomyocyte Apoptosis With Simultaneous Delayed Enhancement MRI Distinguishes Apoptotic and Necrotic Myocytes in vivo: Potential for Midmyocardial Salvage in Acute Ischemia , 2009 .

[8]  Robin P Choudhury,et al.  Molecular imaging in atherosclerosis, thrombosis, and vascular inflammation. , 2009, Arteriosclerosis, thrombosis, and vascular biology.

[9]  M. Olschewski,et al.  Magnetic Resonance Imaging Contrast Agent Targeted Toward Activated Platelets Allows In Vivo Detection of Thrombosis and Monitoring of Thrombolysis , 2008, Circulation.

[10]  S. Neubauer,et al.  Visualization of Activated Platelets by Targeted Magnetic Resonance Imaging Utilizing Conformation-Specific Antibodies against Glycoprotein IIb/IIIa , 2008, Journal of Vascular Research.

[11]  P. Libby,et al.  Activatable Magnetic Resonance Imaging Agent Reports Myeloperoxidase Activity in Healing Infarcts and Noninvasively Detects the Antiinflammatory Effects of Atorvastatin on Ischemia-Reperfusion Injury , 2008, Circulation.

[12]  J. Hennig,et al.  Functionalized Magnetic Resonance Contrast Agent Selectively Binds to Glycoprotein IIb/IIIa on Activated Human Platelets under Flow Conditions and Is Detectable at Clinically Relevant Field Strengths , 2008, Molecular imaging.

[13]  S. Neubauer,et al.  Magnetic Resonance Imaging of Endothelial Adhesion Molecules in Mouse Atherosclerosis Using Dual-Targeted Microparticles of Iron Oxide , 2007, Arteriosclerosis, thrombosis, and vascular biology.

[14]  Jurgen E Schneider,et al.  In vivo magnetic resonance imaging of acute brain inflammation using microparticles of iron oxide , 2007, Nature Medicine.

[15]  A. Gabrielsen,et al.  Gene expression signals involved in ischemic injury, extracellular matrix composition and fibrosis defined by global mRNA profiling of the human left ventricular myocardium. , 2007, Journal of molecular and cellular cardiology.

[16]  Ralph Weissleder,et al.  Noninvasive Vascular Cell Adhesion Molecule-1 Imaging Identifies Inflammatory Activation of Cells in Atherosclerosis , 2006, Circulation.

[17]  H. Fessi,et al.  Preparation, characterization and surface study of poly-epsilon caprolactone magnetic microparticles. , 2006, Journal of colloid and interface science.

[18]  C. Bode,et al.  Conformation-Specific Blockade of the Integrin GPIIb/IIIa: A Novel Antiplatelet Strategy That Selectively Targets Activated Platelets , 2006, Circulation research.

[19]  L. Khachigian,et al.  DNAzymes targeting the transcription factor Egr‐1 reduce myocardial infarct size following ischemia–reperfusion in rats , 2006, Journal of thrombosis and haemostasis : JTH.

[20]  Donghua Zhu,et al.  Biocompatible nanotemplate-engineered nanoparticles containing gadolinium: stability and relaxivity of a potential MRI contrast agent. , 2006, Journal of nanoscience and nanotechnology.

[21]  Ralph Weissleder,et al.  Nanoparticle imaging of integrins on tumor cells. , 2006, Neoplasia.

[22]  J. Foote,et al.  Immunogenicity of engineered antibodies. , 2005, Methods.

[23]  K. Leong,et al.  MR imaging of biodegradable polymeric microparticles: A potential method of monitoring local drug delivery , 2005, Magnetic resonance in medicine.

[24]  F. Ramires,et al.  Activation of nuclear factor-kappaB and its proinflammatory mediator cascade in the infarcted rat heart. , 2004, Biochemical and biophysical research communications.

[25]  R. Kloner,et al.  Cardiac protection during acute myocardial infarction: where do we stand in 2004? , 2004, Journal of the American College of Cardiology.

[26]  J. Gore,et al.  Six-month outcomes in a multinational registry of patients hospitalized with an acute coronary syndrome (the Global Registry of Acute Coronary Events [GRACE]). , 2004, The American journal of cardiology.

[27]  Aliasger K Salem,et al.  Leukocyte-inspired biodegradable particles that selectively and avidly adhere to inflamed endothelium in vitro and in vivo , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Samuel A. Wickline,et al.  Molecular Imaging of Angiogenesis in Early-Stage Atherosclerosis With &agr;v&bgr;3-Integrin–Targeted Nanoparticles , 2003 .

[29]  J. Boura,et al.  Primary angioplasty versus intravenous thrombolytic therapy for acute myocardial infarction : a quantitative review of 23 randomised trials , 2022 .

[30]  Shelton D Caruthers,et al.  Molecular imaging of angiogenesis in early-stage atherosclerosis with alpha(v)beta3-integrin-targeted nanoparticles. , 2003, Circulation.

[31]  L. Rydén,et al.  Pharmacological possibilities for protection against myocardial reperfusion injury. , 2002, Cardiovascular research.

[32]  Z. Ding,et al.  Role of &agr;4 Integrin and VCAM-1 in CD18-Independent Neutrophil Migration Across Mouse Cardiac Endothelium , 2002, Circulation research.

[33]  G. Ambrosio,et al.  Reperfusion injury: experimental evidence and clinical implications. , 1999, American heart journal.

[34]  A. M. Lefer,et al.  Recombinant soluble P-selectin glycoprotein ligand-1 protects against myocardial ischemic reperfusion injury in cats. , 1999, Cardiovascular research.

[35]  Hiroki Sato,et al.  Monoclonal antibody to ICAM‐1 preserves postischemic blood flow and reduces infarct size after ischemia‐reperfusion in rabbit , 1997, Journal of leukocyte biology.

[36]  M. Entman,et al.  Postreperfusion inflammation: a model for reaction to injury in cardiovascular disease. , 1994, Cardiovascular research.

[37]  T. Carlos,et al.  Vascular cell adhesion molecule-1 mediates lymphocyte adherence to cytokine-activated cultured human endothelial cells. , 1990, Blood.

[38]  L. Becker,et al.  Neutrophil depletion limited to reperfusion reduces myocardial infarct size after 90 minutes of ischemia. Evidence for neutrophil-mediated reperfusion injury. , 1989, Circulation.

[39]  A. Ericsson,et al.  Relaxation Enhancement of the Dog Liver and Spleen by Biodegradable Superparamagnetic Particles in Proton Magnetic Resonance Imaging , 1987, Acta radiologica.

[40]  S. Kunkel,et al.  Reduction of myocardial infarct size by neutrophil depletion: effect of duration of occlusion. , 1986, American heart journal.