High throughput protein crystallography: Developments in crystallisation, data collection and data processing

Until recently, individual protein structure determination using protein X-ray crystallography was often a protracted and resource intensive process, sometimes taking years. To address this, the past decade has seen the emergence of high throughput protein crystallography. Here we seek to review broadly the technological advances in protein crystallisation, X-ray data collection and X-ray data processing that have helped to make high throughput crystallography possible.

[1]  N. Chayen,et al.  Experiment and theory for heterogeneous nucleation of protein crystals in a porous medium. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[2]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[3]  Thomas C. Terwilliger,et al.  Electronic Reprint Biological Crystallography Automated Main-chain Model Building by Template Matching and Iterative Fragment Extension , 2022 .

[4]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[5]  Marcel L Verdonk,et al.  Automated Protein–Ligand Crystallography for Structure‐Based Drug Design , 2006, ChemMedChem.

[6]  Bernhard Rupp,et al.  The high-speed Hydra-Plus-One system for automated high-throughput protein crystallography. , 2002, Acta crystallographica. Section D, Biological crystallography.

[7]  Collaborative Computational,et al.  The CCP4 suite: programs for protein crystallography. , 1994, Acta crystallographica. Section D, Biological crystallography.

[8]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[9]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[10]  J. Pflugrath,et al.  The finer things in X-ray diffraction data collection. , 1999, Acta crystallographica. Section D, Biological crystallography.

[11]  Randy J. Read,et al.  Pushing the boundaries of molecular replacement with maximum likelihood. , 2001, Acta crystallographica. Section D, Biological crystallography.

[12]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[13]  Peter Kuhn,et al.  Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. , 2002, Journal of synchrotron radiation.

[14]  Ian Tickle,et al.  High-throughput protein crystallography and drug discovery. , 2004, Chemical Society reviews.

[15]  R. G. Hart,et al.  Structure of Myoglobin: A Three-Dimensional Fourier Synthesis at 2 Å. Resolution , 1960, Nature.

[16]  J. Greer,et al.  Automated crystal mounting and data collection for protein crystallography. , 2000, Structure.

[17]  Charles E. Bugg,et al.  Crystallographic and Modeling Methods in Molecular Design , 1990, Springer New York.

[18]  Russ Miller,et al.  The design and implementation of SnB version 2.0 , 1999 .

[19]  Jacob N. Smith,et al.  TEXTAL™: Automated Crystallographic Protein Structure Determination , 2005, AAAI.

[20]  Christopher W Murray,et al.  Fragment-based lead discovery using X-ray crystallography. , 2005, Journal of medicinal chemistry.

[21]  Thomas C. Terwilliger,et al.  Automated MAD and MIR structure solution , 1999, Acta crystallographica. Section D, Biological crystallography.

[22]  E Blanc,et al.  Electronic Reprint Biological Crystallography Modelling Prior Distributions of Atoms for Macromolecular Refinement and Completion Roversi Et Al. ¯ Prior Distributions for Macromolecular Refinement and Completion , 2022 .

[23]  A. Sharff,et al.  High-throughput crystallography to enhance drug discovery. , 2003, Current opinion in chemical biology.

[24]  Robert M. Sweet,et al.  Macromolecular Crystallography: Part A , 1997 .

[25]  Richard J Morris,et al.  ARP/wARP and automatic interpretation of protein electron density maps. , 2003, Methods in enzymology.

[26]  A. McPherson Crystallization of Biological Macromolecules , 1999 .

[27]  G. Murshudov,et al.  Refinement of macromolecular structures by the maximum-likelihood method. , 1997, Acta crystallographica. Section D, Biological crystallography.

[28]  Michael J. Hartshorn,et al.  AstexViewerTM †: a visualisation aid for structure-based drug design , 2002, J. Comput. Aided Mol. Des..

[29]  Wolfgang Kabsch,et al.  Automatic indexing of rotation diffraction patterns , 1988 .

[30]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[31]  Andrew J. Sharff HIGH THROUGHPUT CRYSTALLOGRAPHY ON AN IN-HOUSE SOURCE, USING ACTOR , 2003 .

[32]  A. Vagin,et al.  MOLREP: an Automated Program for Molecular Replacement , 1997 .