Unusually long, multicenter, cation(δ+)···anion(δ-) bonding observed for several polymorphs of [TTF][TCNE].

The α, β, and δ polymorphs of [TTF][TCNE] (TTF=tetrathiafulvalene; TCNE=tetracyanoethylene) exhibit a new type of long, multicenter bonding between the [TTF](δ+) and [TCNE](δ-) moieties, demonstrating the existence of long, hetero-multicenter bonding with a cationic(δ+)···anionic(δ-) zwitterionic-like structure. These diamagnetic π-[TTF](δ+) [TCNE](δ-) heterodimers exhibit a transfer of about 0.5 e(-) from the TTF to the TCNE fragments, as observed from experimental studies, in accord with theoretical predictions, that is, [TTF(δ+)···TCNE(δ-)] (δ≅0.5). They have several interfragment distances <3.4 Å, and a computed interaction energy of -21.2 kcal mol(-1), which is typical of long, multicenter bonds. The lower stability of [TTF](δ+) [TCNE](δ-) with respect to typical ionic bonds is due, in part, to the partial electron transfer that reduces the electrostatic bonding component. This reduced electrostatic interaction, and the large interfragment dispersion stabilize the long, heterocationic/anionic multicenter interaction, which in [TTF(δ+)···TCNE(δ-)] always involves two electrons, but have ten, eight, and eight bond critical points (bcps) involving C-C, N-S, and sometimes C-S and C-N components for the α, β, and δ polymorphs, respectively. In contrast, γ-[TTF][TCNE] possesses [TTF](2)(2+) and [TCNE](2)(2-) dimers, each with long, homo-multicenter 2e(-)/12c (c=center, 2 C+4 S) [TTF](2)(2+) cationic(+)···cationic(+) bonds, as well as long, homo-multicenter 2e(-)/4c [TCNE](2)(2-) anionic(-)···anionic(-) bonding. The MO diagrams for the α, β, and δ polymorphs have all of the features found for conventional covalent C-C bonds, and for all of the previously studied multicenter long bonds, for example, π-[TTF](2)(2+) and π-[TCNE](2)(2-). The HOMOs for α-, β-, and δ-[TTF][TCNE] have 2c C-S and 3c C-C-C orbital-overlap contributions between the [TTF](δ+-) and [TCNE](δ-) moieties; these are the shortest intra [TTF···TCNE] separations. Thus, from an orbital-overlap perspective, the bonding has 2c and 3c components residing over one S and four C atoms.

[1]  Santiago Alvarez,et al.  A bonding quandary--or--a demonstration of the fact that scientists are not born with logic. , 2009, Chemistry.

[2]  Joel S. Miller,et al.  The tetracyanopyrazinide dimer dianion, [TCNP]2(2-). 2-Electron 8-center bonding. , 2009, Journal of the American Chemical Society.

[3]  Joel S. Miller,et al.  Theoretical study of the electronic structure of [TCNQ]2(2-) (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane) dimers and their intradimer, long, multicenter bond in solution and the solid state. , 2009, The journal of physical chemistry. A.

[4]  Joel S. Miller,et al.  Comparative analysis of the multicenter, long bond in [TCNE]*- and phenalenyl radical dimers: a unified description of multicenter, long bonds. , 2009, Journal of the American Chemical Society.

[5]  Louise N. Dawe,et al.  [MeNC5H5]2[TCNE]2 (TCNE = tetracyanoethylene). Single crystal X-ray and neutron diffraction characterization of an exceptionally long 2.8 Å C–C bond , 2009 .

[6]  Joel S. Miller,et al.  Theoretical study of the electronic structure of [tetrathiafulvalene](2)(2+) dimers and their long, intradimer multicenter bonding in solution and the solid state. , 2009, The journal of physical chemistry. A.

[7]  Joel S. Miller,et al.  [Cyanil](2)(2-) dimers possess long, two-electron ten-center (2e(-)/10c) multicenter bonding. , 2008, Physical chemistry chemical physics : PCCP.

[8]  Joel S. Miller,et al.  Four-center carbon-carbon bonding. , 2007, Accounts of chemical research.

[9]  Juan J. Novoa,et al.  The origin of the two‐electron/four‐centers CC bond in π‐TCNE22− dimers: Electrostatic or dispersion? , 2007, J. Comput. Chem..

[10]  A. Batsanov Tetrathiafulvalene revisited. , 2006, Acta crystallographica. Section C, Crystal structure communications.

[11]  Joel S. Miller Tetracyanethylen: die charakteristischen Geometrien und Schwingungsabsorptionen seiner zahlreichen Strukturen , 2006 .

[12]  Joel S. Miller,et al.  Tetracyanoethylene (TCNE): the characteristic geometries and vibrational absorptions of its numerous structures. , 2006, Angewandte Chemie.

[13]  M. Head‐Gordon,et al.  Steric modulations in the reversible dimerizations of phenalenyl radicals via unusually weak carbon-centered π- and σ-bonds , 2006 .

[14]  David W. Small,et al.  Characterizing the dimerizations of phenalenyl radicals by ab initio calculations and spectroscopy: sigma-bond formation versus resonance pi-stabilization. , 2005, The journal of physical chemistry. A.

[15]  Joel S. Miller,et al.  Metallocene‐Based Magnets , 2005 .

[16]  David W. Small,et al.  Intermolecular pi-to-pi bonding between stacked aromatic dyads. Experimental and theoretical binding energies and near-IR optical transitions for phenalenyl radical/radical versus radical/cation dimerizations. , 2004, Journal of the American Chemical Society.

[17]  M. Head‐Gordon,et al.  What is the nature of the long bond in the TCNE22−π-dimer? , 2004 .

[18]  Maria Cristina Burla,et al.  SIR2002: the program , 2003 .

[19]  Anthony L. Spek,et al.  Journal of , 1993 .

[20]  Joel S. Miller,et al.  Exceptionally Long (≥2.9 Å) CC Bonding Interactions in π‐[TCNE]22− Dimers: Two‐Electron Four‐Center Cation‐Mediated CC Bonding Interactions Involving π* Electrons , 2002 .

[21]  R. E. Del Sesto,et al.  Exceptionally Long (≥2.9 Å) C-C Bonds between [TCNE]- Ions: Two-Electron, Four-Center π*-π* C-C Bonding in π-[TCNE]22. , 2001, Angewandte Chemie.

[22]  David J. Williams,et al.  A Three-Pole Supramolecular Switch† , 1999 .

[23]  J. Ouyang,et al.  A Stable Neutral Hydrocarbon Radical: Synthesis, Crystal Structure, and Physical Properties of 2,5,8-Tri-tert-butyl-phenalenyl , 1999 .

[24]  Joel S. Miller,et al.  Ferrimagnetic Behavior of Multiple Phases and Solvates of (meso-Tetrakis(4-chlorophenyl)porphinato)manganese(III) Tetracyanoethenide, [MnTClPP]+[TCNE]•-. Enhancement of Magnetic Coupling by Thermal Annealing , 1998 .

[25]  K. Hirao,et al.  Transition state barrier height for the reaction H2CO→H2+CO studied by multireference Mo/ller–Plesset perturbation theory , 1997 .

[26]  C. Pecile,et al.  TTF–TCNE a charge transfer π–molecular crystal with partial ionic ground state: Optical properties and electron‐molecular vibrations interaction , 1996 .

[27]  James Y. Becker,et al.  A New Polymorphic Modification of Tetrathiafulvalene. Crystal Structure, Lattice Energy and Intermolecular Interactions , 1994 .

[28]  J. Novoa,et al.  A numerical evaluation of the counterpoise method on hydrogen bond complexes using near complete basis sets , 1994 .

[29]  A. Epstein,et al.  Organic and Organometallic Molecular Magnetic Materials—Designer Magnets , 1994 .

[30]  Joel S. Miller,et al.  Organische und metallorganische molekulare magnetische Materialien: Designer‐Magnete , 1994 .

[31]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[32]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[33]  Jerzy Cioslowski,et al.  Topological properties of electron density in search of steric interactions in molecules : electronic structure calculations on ortho-substituted biphenyls , 1992 .

[34]  Christopher A. Hunter,et al.  The nature of .pi.-.pi. interactions , 1990 .

[35]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[36]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[37]  A. Epstein,et al.  Ferromagnetic behavior of [Fe(C5Me5)2]+.bul. [TCNE]-.bul.. Structural and magnetic characterization of decamethylferrocenium tetracyanoethenide, [Fe(C5Me5)2]+.bul. [TCNE]-.bul..cntdot.MeCN and decamethylferrocenium pentacyanopropenide, [Fe(C5Me5)2]+.bul. [C3(CN)5]- , 1987 .

[38]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[39]  H. Guth,et al.  A new refinement of monoclinic tetracyanoethylene (TCNE) from X-ray and neutron data , 1982 .

[40]  Friedrich Biegler-König,et al.  Calculation of the average properties of atoms in molecules. II , 1982 .

[41]  J. Pople,et al.  Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules , 1971 .

[42]  A. Bondi van der Waals Volumes and Radii , 1964 .

[43]  Joel S. Miller,et al.  Isolation and structural determination of octacyanobutanediide, [C4(CN)8]2–; precursors to M(TCNE)x magnets‡ , 1998 .

[44]  Joel S. Miller,et al.  Characterization of novel TCNQ and TCNE 1:1 and 1:2 salts of the tetrakis(dimethyamino)ethylene dication, [{(CH3)2N}2C–C{N(CH3)2}2]2+ , 1996 .

[45]  D. A. Clemente,et al.  Structure of two polymorphs of the TTF-TCNE charge-transfer complex and the degree of ionicity , 1996 .

[46]  Markus P. Fülscher,et al.  Multiconfigurational perturbation theory: Applications in electronic spectroscopy , 1996 .

[47]  A. Heeger Charge-Density Wave Phenomena in One-Dimensional Metals: TTF-TCNQ and Related Organic Conductors , 1979 .

[48]  Philip Coppens,et al.  Crystal and molecular structure of the aromatic sulphur compound 2,2′-bi-1,3-dithiole. Evidence for d-orbital participation in bonding , 1971 .