Online time-constrained scheduling in linear networks

We consider the problem of scheduling a sequence of packets over a linear network, where every packet has a source and a target, as well as a release time and a deadline by which it must arrive at its target. The model we consider is bufferless, where packets are not allowed to be buffered in nodes along their paths other than at their source. This model applies to optical networks where opto-electronic conversion is costly, and packets mostly travel through bufferless hops. The offline version of this problem was previously studied in M. Adler et al. (2002). In this paper we study the online version of the problem, where we are required to schedule the packets without knowledge of future packet arrivals. We use competitive analysis to evaluate the performance of our algorithms. We present the first deterministic online algorithms for several versions of the problem. For the problem of throughput maximization, where all packets have uniform weights, we give an algorithm with a logarithmic competitive ratio, and present some lower bounds. For other weight functions, we show algorithms that achieve optimal competitive ratios. We complete our study with several experimental results.