Two-fluid model for the simultaneous flow of colloids and fluids in porous media.

To describe the velocities of particles such as ions, protein molecules and colloids dispersed or dissolved in a fluid, it is important to also describe the forces acting on the fluid, including pressure gradients and friction of the fluid with the particles and with the porous media through which the fluid flows. To account for this problem, the use of a two-fluid model is described, familiar in the field of fluid mechanics, extended to include osmotic effects. We show how familiar relationships follow in various situations and give examples of combined fluid/particle transport in neutral and charged membranes driven by a combination of electrostatic, diffusional and pressure forces. The analysis shows how the same modeling framework can be generally used both for multidimensional electrokinetic flow through macroscopic channels and around macroscopic objects, as well as for mean-field modeling of transport through porous media such as gels and membranes.

[1]  Xiaolong Yin,et al.  Fluid‐particle drag in low‐Reynolds‐number polydisperse gas–solid suspensions , 2009 .

[2]  A. Kargol A mechanistic model of transport processes in porous membranes generated by osmotic and hydrostatic pressure , 2001 .

[3]  P. M. Biesheuvel,et al.  Counterion volume effects in mixed electrical double layers. , 2007, Journal of colloid and interface science.

[4]  James Wei IRREVERSIBLE THERMODYNAMICS IN ENGINEERING , 1966 .

[5]  D. E. Goldman POTENTIAL, IMPEDANCE, AND RECTIFICATION IN MEMBRANES , 1943, The Journal of general physiology.

[6]  H. Ussing Membrane Transport in Biology , 2011 .

[7]  W. Richard Bowen,et al.  Characterisation and prediction of separation performance of nanofiltration membranes , 1996 .

[8]  S. Dukhin,et al.  Electrokinetic effects of adsorbed neutral polymers , 1984 .

[9]  J. Kuipers,et al.  A numerical model of gas-fluidized beds , 1992 .

[10]  K. S. Spiegler,et al.  Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes , 1966 .

[11]  C. L. Rice,et al.  Electrokinetic Flow in a Narrow Cylindrical Capillary , 1965 .

[12]  B. Locke,et al.  Electro-Osmotic Flow in Porous Media Using Magnetic Resonance Imaging , 2001 .

[13]  J. Kuipers,et al.  Numerical study of segregation using a new drag force correlation for polydisperse systems derived from lattice-Boltzmann simulations , 2007 .

[14]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[15]  Haochen Zhu,et al.  Ion rejection properties of nanopores with bipolar fixed charge distributions. , 2010, The journal of physical chemistry. B.

[16]  E. Bresler,et al.  Irreversible Thermodynamics and Flow across Membranes. , 1969, Science.

[17]  P. M. Biesheuvel,et al.  Nonlinear dynamics of capacitive charging and desalination by porous electrodes. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  A. Galston Plant Physiology , 1967, Nature.

[19]  A. Mauro Nature of solvent transfer in osmosis. , 1957, Science.

[20]  S. Schultz Basic principles of membrane transport , 1980 .

[21]  D. R. Lloyd,et al.  Reverse osmosis of multicomponent electrolyte solutions. Part II. Experimental verification , 1997 .

[22]  W. Deen Hindered transport of large molecules in liquid‐filled pores , 1987 .

[23]  J. Kuipers,et al.  Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: A hard-sphere approach. , 1996 .

[24]  H. Brenner,et al.  Physical mechanism of membrane osmotic phenomena , 1996 .

[25]  J. Duval,et al.  Electrokinetics of diffuse soft interfaces. IV. Analysis of streaming current measurements at thermoresponsive thin films. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[26]  P. M. Biesheuvel,et al.  Sedimentation–diffusion equilibrium of binary mixtures of charged colloids including volume effects , 2005 .

[27]  R. Schlögl Zur Theorie der anomalen Osmose. , 1955 .

[28]  J. Post,et al.  Energy recovery from controlled mixing salt and fresh water with a reverse electrodialysis system. , 2008, Environmental science & technology.

[29]  E. A. Mason,et al.  Appraisal of equations for neutral solute flux across porous sieving membranes. , 1976, Biophysical chemistry.

[30]  J. Eijkel,et al.  Principles and applications of nanofluidic transport. , 2009, Nature nanotechnology.

[31]  D. Brogioli Extracting renewable energy from a salinity difference using a capacitor. , 2009, Physical review letters.

[32]  W. Ng,et al.  Evaluation of Feed Concentration Effects on Salt/Ion Transport through RO/NF Membranes with the Nernst-Planck-Donnan Model , 2002 .

[33]  P. M. Biesheuvel,et al.  Direct power production from a water salinity difference in a membrane-modified supercapacitor flow cell. , 2010, Environmental science & technology.

[34]  J. F. Osterle,et al.  Membrane transport characteristics of ultrafine capillaries. , 1968, The Journal of chemical physics.

[35]  M. Bazant,et al.  Towards an understanding of induced-charge electrokinetics at large applied voltages in concentrated solutions. , 2009, Advances in colloid and interface science.

[36]  M. Bazant,et al.  Diffuse-charge dynamics in electrochemical systems. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  D. REICHENBERG,et al.  Ion Exchange , 1959, Nature.

[38]  N. Benes,et al.  Predictive charge-regulation transport model for nanofiltration from the theory of irreversible processes , 2004 .

[39]  J. C. Fair,et al.  Reverse Electrodialysis in Charged Capillary Membranes , 1971 .

[40]  J. Kuipers,et al.  Dynamic simulation of dispersed gas-liquid two phase flow using a discrete bubble model. , 1996 .

[41]  Jacob H. Masliyah,et al.  ]Hindered settling in a multi-species particle system , 1979 .

[42]  P. M. Biesheuvel,et al.  Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration). , 2002, Journal of colloid and interface science.

[43]  P. M. Biesheuvel,et al.  Microdivers to study sedimentation in polydisperse, concentrated colloidal suspensions , 2001 .

[44]  Lianfa Song,et al.  Experimental study of water and salt fluxes through reverse osmosis membranes. , 2005, Environmental science & technology.

[45]  X. Lefebvre,et al.  Nanofiltration theory: good co-ion exclusion approximation for single salts. , 2005, The journal of physical chemistry. B.

[46]  P. Läuger,et al.  Transport phenomena in membranes. , 1969, Angewandte Chemie.

[47]  H. K. Lonsdale,et al.  Statistical-mechanical theory of membrane transport , 1990 .

[48]  Lasse Murtomäki,et al.  Ionic transport processes , 2008 .

[49]  G. Schmid The Nature of Nanotechnology , 2010 .

[50]  Edward A. Mason,et al.  Generalization of membrane reflection coefficients for nonideal, nonisothermal, multicomponent systems with external forces and viscous flow , 1986 .

[51]  J. Georgiadis,et al.  Science and technology for water purification in the coming decades , 2008, Nature.

[52]  A. J. Staverman Non-equilibrium thermodynamics of membrane processes , 1952 .

[53]  L. Axel Flow limits of Kedem-Katchalsky equations for fluid flux. , 1976, Bulletin of Mathematical Biology.

[54]  P. M. Biesheuvel,et al.  Membrane capacitive deionization , 2010 .

[55]  O. Sten-Knudsen,et al.  Passive Transport Processes , 1978 .

[56]  P. Ray,et al.  On the Theory of Osmotic Water Movement. , 1960, Plant physiology.

[57]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.

[58]  Amy E. Childress,et al.  Forward osmosis: Principles, applications, and recent developments , 2006 .

[59]  N. Lakshminarayanaiah Equations of membrane biophysics , 1984 .

[60]  P. M. Biesheuvel,et al.  Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization , 2010 .

[61]  Ain A. Sonin,et al.  Osmosis and Ion Transport in Charged Porous Membranes: A Macroscopic, Mechanistic Model , 1976 .

[62]  E. Bresler,et al.  Diffusive and Convective Flow Across Membranes: Irreversible Thermodynamic Approach , 1969, Science.

[63]  E. Bresler,et al.  Onsager's reciprocal relation. Examination of its application to a simple membrane transport process , 1969 .

[64]  H. Gregor,et al.  Charged gels and membranes , 1976 .

[65]  P. Meares Some Uses for Membrane Transport Coefficients , 1976 .

[66]  A. Larbot,et al.  Salt filtration on gamma alumina nanofiltration membranes fired at two different temperatures , 1997 .

[67]  W. Russel,et al.  Measurement of the hard-sphere equation of state using screened charged polystyrene colloids. , 1996, Physical review. B, Condensed matter.

[68]  H. Tuppy,et al.  Hoppe-Seyler's zeitschrift fur physiologische chemie , 1977 .

[69]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[70]  Eli Ruckenstein,et al.  Electrolyte osmosis through capillaries , 1981 .

[71]  A. Szymczyk,et al.  Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements. , 2009, Journal of colloid and interface science.