Differential Aging Analysis in Human Cerebral Cortex Identifies Variants in TMEM106B and GRN that Regulate Aging Phenotypes.

[1]  M. Levine,et al.  Genetic variants near MLST8 and DHX57 affect the epigenetic age of the cerebellum , 2016, Nature Communications.

[2]  Magda Tsolaki,et al.  A NOVEL ALZHEIMER DISEASE LOCUS LOCATED NEAR THE GENE ENCODING TAU PROTEIN , 2015, Molecular Psychiatry.

[3]  Keith A. Johnson,et al.  Modulation of TREM2 by CD33: a protein QTL study integrates Alzheimer loci in human monocytes , 2015, Nature Neuroscience.

[4]  D. Dickson,et al.  The TMEM106B locus and TDP-43 pathology in older persons without FTLD , 2015, Neurology.

[5]  Peer Bork,et al.  Integrated Transcriptome and Proteome Analyses Reveal Organ-Specific Proteome Deterioration in Old Rats , 2015, Cell systems.

[6]  S. Quake,et al.  A survey of human brain transcriptome diversity at the single cell level , 2015, Proceedings of the National Academy of Sciences.

[7]  M. Kaeberlein,et al.  Why Is Aging Conserved and What Can We Do about It? , 2015, PLoS biology.

[8]  D. Bennett,et al.  The TMEM106B locus and TDP-43 pathology in older persons without FTLD , 2015, Neurology.

[9]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[10]  R. Leak,et al.  Microglial and macrophage polarization—new prospects for brain repair , 2015, Nature Reviews Neurology.

[11]  J. Sheng,et al.  Association of progranulin polymorphism rs5848 with neurodegenerative diseases: a meta-analysis , 2015, Journal of Neurology.

[12]  Janna H. Neltner,et al.  Primary age-related tauopathy (PART): a common pathology associated with human aging , 2014, Acta Neuropathologica.

[13]  M. Mesulam,et al.  Genetic modifiers in carriers of repeat expansions in the C9ORF72 gene , 2014, Molecular Neurodegeneration.

[14]  Margaret A. Pericak-Vance,et al.  Genome-Wide Association Meta-analysis of Neuropathologic Features of Alzheimer's Disease and Related Dementias , 2014, PLoS genetics.

[15]  S. Strittmatter,et al.  Lysosome size, motility and stress response regulated by fronto-temporal dementia modifier TMEM106B , 2014, Molecular and Cellular Neuroscience.

[16]  Chuong B. Do,et al.  Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease , 2014, Nature Genetics.

[17]  R. Cabo,et al.  The Search for Antiaging Interventions: From Elixirs to Fasting Regimens , 2014, Cell.

[18]  Brian B. Avants,et al.  Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration , 2014, Neurobiology of Aging.

[19]  T. Wyss-Coray,et al.  Microglial dysfunction in brain aging and Alzheimer's disease. , 2014, Biochemical pharmacology.

[20]  Jutta Gampe,et al.  Genome-wide association meta-analysis of human longevity identifies a novel locus conferring survival beyond 90 years of age , 2014, Human molecular genetics.

[21]  Manolis Kellis,et al.  Common Genetic Variants Modulate Pathogen-Sensing Responses in Human Dendritic Cells , 2014, Science.

[22]  J. Vaupel,et al.  Diversity of ageing across the tree of life , 2013, Nature.

[23]  C. Hoogenraad,et al.  The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes , 2013, The EMBO journal.

[24]  S. Gygi,et al.  Identification of a Unique TGF-β Dependent Molecular and Functional Signature in Microglia , 2013, Nature Neuroscience.

[25]  M. Murray,et al.  Hippocampal sclerosis in Lewy body disease is a TDP-43 proteinopathy similar to FTLD-TDP Type A , 2014, Acta Neuropathologica.

[26]  Nick C Fox,et al.  Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease , 2013, Nature Genetics.

[27]  Bruce A. Yankner,et al.  Inflammation links ageing to the brain , 2013, Nature.

[28]  Thomas W. Mühleisen,et al.  Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease , 2013, Nature Genetics.

[29]  L. Tran,et al.  Integrated Systems Approach Identifies Genetic Nodes and Networks in Late-Onset Alzheimer’s Disease , 2013, Cell.

[30]  O. Brady,et al.  The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. , 2013, Human molecular genetics.

[31]  M. Nishihara,et al.  Exacerbated inflammatory responses related to activated microglia after traumatic brain injury in progranulin-deficient mice , 2013, Neuroscience.

[32]  T. Ideker,et al.  Genome-wide methylation profiles reveal quantitative views of human aging rates. , 2013, Molecular cell.

[33]  Leopold Parts,et al.  Gene expression changes with age in skin, adipose tissue, blood and brain , 2013, Genome Biology.

[34]  Steven Finkbeiner,et al.  Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. , 2012, The Journal of clinical investigation.

[35]  J. Trojanowski,et al.  TMEM106B, the Risk Gene for Frontotemporal Dementia, Is Regulated by the microRNA-132/212 Cluster and Affects Progranulin Pathways , 2012, The Journal of Neuroscience.

[36]  R. Mayeux,et al.  Cognitive function in families with exceptional survival , 2012, Neurobiology of Aging.

[37]  A. Salminen,et al.  Inflammaging: disturbed interplay between autophagy and inflammasomes , 2012, Aging.

[38]  Ian J. Deary,et al.  Genetic contributions to stability and change in intelligence from childhood to old age , 2012, Nature.

[39]  J. Leek,et al.  Temporal dynamics and genetic control of transcription in the human prefrontal cortex , 2011, Nature.

[40]  J. Kleinman,et al.  Spatiotemporal transcriptome of the human brain , 2011, Nature.

[41]  Menno P. Witter,et al.  A pathophysiological framework of hippocampal dysfunction in ageing and disease , 2011, Nature Reviews Neuroscience.

[42]  A. Uitterlinden,et al.  Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited , 2011, Aging cell.

[43]  Steve Horvath,et al.  Epigenetic Predictor of Age , 2011, PloS one.

[44]  D. Knopman,et al.  Estimating the Number of Persons with Frontotemporal Lobar Degeneration in the US Population , 2011, Journal of Molecular Neuroscience.

[45]  J. Morris,et al.  Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. , 2011, Archives of neurology.

[46]  D. Neary,et al.  Frontotemporal lobar degeneration genome wide association study replication confirms a risk locus shared with amyotrophic lateral sclerosis , 2011, Neurobiology of Aging.

[47]  Paola Sebastiani,et al.  Health and function of participants in the Long Life Family Study: A comparison with other cohorts , 2011, Aging.

[48]  D. Geschwind,et al.  TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers , 2010, Neurology.

[49]  Brian K. Kennedy,et al.  Progeria syndromes and ageing: what is the connection? , 2010, Nature Reviews Molecular Cell Biology.

[50]  Michael Boehnke,et al.  LocusZoom: regional visualization of genome-wide association scan results , 2010, Bioinform..

[51]  Yun Li,et al.  METAL: fast and efficient meta-analysis of genomewide association scans , 2010, Bioinform..

[52]  Luigi Ferrucci,et al.  Abundant Quantitative Trait Loci Exist for DNA Methylation and Gene Expression in Human Brain , 2010, PLoS genetics.

[53]  M. J. Fresnadillo Martínez,et al.  Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions , 2010, Nature Genetics.

[54]  C. Iadecola,et al.  Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice , 2010, The Journal of experimental medicine.

[55]  Ewout J N Groen,et al.  Genome-wide association study identifies 19p13.3 (UNC13A) and 9p21.2 as susceptibility loci for sporadic amyotrophic lateral sclerosis , 2009, Nature Genetics.

[56]  P. Donnelly,et al.  A Flexible and Accurate Genotype Imputation Method for the Next Generation of Genome-Wide Association Studies , 2009, PLoS genetics.

[57]  D. Stephan,et al.  Genetic control of human brain transcript expression in Alzheimer disease. , 2009, American journal of human genetics.

[58]  João Pedro de Magalhães,et al.  Meta-analysis of age-related gene expression profiles identifies common signatures of aging , 2009, Bioinform..

[59]  Nick C Fox,et al.  Letter abstract - Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's Disease , 2009 .

[60]  Steve Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[61]  Jun Tan,et al.  Inflammaging as a prodrome to Alzheimer's disease , 2008, Journal of Neuroinflammation.

[62]  R. Petersen,et al.  Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia , 2008, Human molecular genetics.

[63]  D. Stephan,et al.  A survey of genetic human cortical gene expression , 2007, Nature Genetics.

[64]  A. Owen,et al.  AGEMAP: A Gene Expression Database for Aging in Mice , 2007, PLoS genetics.

[65]  S. Horvath,et al.  Weighted gene coexpression network analysis strategies applied to mouse weight , 2007, Mammalian Genome.

[66]  G. Castellani,et al.  Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans , 2007, Mechanisms of Ageing and Development.

[67]  R. Petersen,et al.  The incidence of frontotemporal lobar degeneration in Rochester, Minnesota, 1990 through 1994 , 2004, Neurology.

[68]  R. Suzman,et al.  An Overview of the Health and Retirement Study , 1995 .

[69]  T. Beach,et al.  Patterns of gliosis in alzheimer's disease and aging cerebrum , 1989, Glia.