Entanglement-assisted quantum error-correcting codes from units

Entanglement-assisted quantum error-correcting codes (EAQECCs) to desired rate, error-correcting capability and maximum shared entanglement are constructed. Thus for a required rate $R$, required error-correcting capability to correct $t$ errors, mds (maximum distance separable) EAQECCs of the form $[[n,r,d;c]]$ with $R=\frac{r}{n}, d\geq (2t+1), c = (n-r), d= (n-r+1)$ are constructed. Series of such codes may be constructed where the rate and the relative distance approach non-zero constants as $n$ approaches infinity. The codes may also be constructed over prime order fields in which modular arithmetic may be employed.

[1]  T. Brun,et al.  Optimal entanglement formulas for entanglement-assisted quantum coding , 2008, 0804.1404.

[2]  Igor Devetak,et al.  Catalytic Quantum Error Correction , 2014, IEEE Transactions on Information Theory.

[3]  T. Aaron Gulliver,et al.  Constructions of good entanglement-assisted quantum error correcting codes , 2016, Designs, Codes and Cryptography.

[4]  Sunghwan Kim,et al.  Minimal-Entanglement Entanglement-Assisted Quantum Error Correction Codes from Modified Circulant Matrices , 2017, Symmetry.

[5]  Min-Hsiu Hsieh,et al.  Entanglement-Assisted Quantum Error-Correcting Codes , 2016, 1610.04013.

[6]  Donny Hurley,et al.  Coding Theory: the unit-derived methodology , 2018, Int. J. Inf. Coding Theory.

[7]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[8]  Igor Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[9]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.