Overlaying Time Scales in Financial Volatility Data

Apart from the well-known, high persistence of daily financial volatility data, there is also a short correlation structure that reverts to the mean in less than a month. We find this short correlation time scale in six different daily financial time series and use it to improve the short-term forecasts from GARCH models. We study different generalizations of GARCH that allow for several time scales. On our holding sample, none of the considered models can fully exploit the information contained in the short scale. Wavelet analysis shows a correlation between fluctuations on long and on short scales. Models accounting for this correlation as well as long memory models for absolute returns appear to be promising.

[1]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[2]  Sébastien Laurent,et al.  G@RCH 2.2: An Ox Package for Estimating and Forecasting Various ARCH Models , 2001 .

[3]  R. Engle Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation , 1982 .

[4]  R. Chou,et al.  ARCH modeling in finance: A review of the theory and empirical evidence , 1992 .

[5]  Eric Hillebrand Neglecting Parameter Changes in Autoregressive Models , 2004 .

[6]  James D. Hamilton,et al.  Autoregressive conditional heteroskedasticity and changes in regime , 1994 .

[7]  M. Dacorogna,et al.  Volatilities of different time resolutions — Analyzing the dynamics of market components , 1997 .

[8]  C. Granger,et al.  AN INTRODUCTION TO LONG‐MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING , 1980 .

[9]  Rama Cont,et al.  Comment on "Turbulent cascades in foreign exchange markets" , 1996, cond-mat/9607120.

[10]  Daniel B. Nelson Stationarity and Persistence in the GARCH(1,1) Model , 1990, Econometric Theory.

[11]  Thomas Mikosch,et al.  Change of structure in financial time series, long range dependence and the GARCH model , 1998 .

[12]  Christopher G. Lamoureux,et al.  Persistence in Variance, Structural Change, and the GARCH Model , 1990 .

[13]  Tim Bollerslev,et al.  COMMON PERSISTENCE IN CONDITIONAL VARIANCES , 1993 .

[14]  E. Ghysels,et al.  Detecting Multiple Breaks in Financial Market Volatility Dynamics , 2002 .

[15]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[16]  R. Baillie,et al.  Fractionally integrated generalized autoregressive conditional heteroskedasticity , 1996 .

[17]  J. Geweke,et al.  THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS , 1983 .

[18]  Marius Ooms,et al.  A Package for Estimating, Forecasting and Simulating Arfima Models: Arfima package 1.0 for Ox , 1999 .

[19]  S. Mallat A wavelet tour of signal processing , 1998 .

[20]  Professors Engle,et al.  MODELING THE PERSISTENCE OF CONDITIONAL VARIANCES: A COMMENT , 1986 .

[21]  Andrew J. Patton,et al.  What good is a volatility model? , 2001 .

[22]  C. Granger Long memory relationships and the aggregation of dynamic models , 1980 .

[23]  H. Iemoto Modelling the persistence of conditional variances , 1986 .

[24]  Eric Hillebrand Neglecting parameter changes in GARCH models , 2005 .

[25]  C. Granger,et al.  Modeling volatility persistence of speculative returns: A new approach , 1996 .

[26]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[27]  Jurgen A. Doornik,et al.  Object-orientd matrix programming using OX , 1996 .

[28]  B. LeBaron,et al.  Stochastic volatility as a simple generator of apparent financial power laws and long memory , 2001 .

[29]  Efficient Method of Moments , 2002 .

[30]  R. Leipus,et al.  Testing for parameter changes in ARCH models , 1999 .

[31]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[32]  Andrew T. Levin,et al.  A Practitioner's Guide to Robust Covariance Matrix Estimation , 1996 .