Traveling Waves in Lattice Dynamical Systems

Abstract In this paper, we study the existence and stability of traveling waves in lattice dynamical systems, in particular, in lattice ordinary differential equations (lattice ODEs) and in coupled map lattices (CMLs). Instead of employing the moving coordinate approach as for partial differential equations, we construct a local coordinate system around a traveling wave solution of a lattice ODE, analogous to the local coordinate system around a periodic solution of an ODE. In this coordinate system the lattice ODE becomes a nonautonomous periodic differential equation, and the traveling wave corresponds to a periodic solution of this equation. We prove the asymptotic stability with asymptotic phase shift of the traveling wave solution under appropriate spectral conditions. We also show the existence of traveling waves in CML's which arise as time-discretizations of lattice ODEs. Finally, we show that these results apply to the discrete Nagumo equation.

[1]  S. Chow,et al.  A Free Boundary Problem Related to Condensed Two-Phase Combustion. Part II. Stability and Bifurcation , 1994 .

[2]  Vitaly Volpert,et al.  Traveling Wave Solutions of Parabolic Systems , 1994 .

[3]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[4]  Bard Ermentrout,et al.  Inhibition-Produced Patterning in Chains of Coupled Nonlinear Oscillators , 1994, SIAM J. Appl. Math..

[5]  John Mallet-Paret,et al.  Pattern Formation and Spatial Chaos in Lattice Dynamical Systems: I , 1995 .

[6]  Shui-Nee Chow,et al.  DYNAMICS OF LATTICE DIFFERENTIAL EQUATIONS , 1996 .

[7]  J. Rogers Chaos , 1876, Molecular Vibrations.

[8]  S. Chow,et al.  A Free Boundary Problem Related to Condensed Two-Phase Combustion. Part I. Semigroup , 1994 .

[9]  Errico Presutti,et al.  Travelling fronts in non-local evolution equations , 1995 .

[10]  Jonathan G. Bell,et al.  Some threshold results for models of myelinated nerves , 1981 .

[11]  G. Ermentrout,et al.  On chains of oscillators forced at one end , 1991 .

[12]  Firth Wj,et al.  Optical memory and spatial chaos. , 1988 .

[13]  M. Hillert,et al.  A solid-solution model for inhomogeneous systems , 1961 .

[14]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[15]  Vladimir I. Nekorkin,et al.  CHAOS OF TRAVELING WAVES IN A DISCRETE CHAIN OF DIFFUSIVELY COUPLED MAPS , 1994 .

[16]  B. Zinner,et al.  Existence of traveling wavefront solutions for the discrete Nagumo equation , 1992 .

[17]  Shui-Nee Chow,et al.  Pattern formation and spatial chaos in lattice dynamical systems. II , 1995 .

[18]  Hans F. Weinberger,et al.  Long-Time Behavior of a Class of Biological Models , 1982 .

[19]  Peter W. Bates,et al.  Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space , 1998 .

[20]  Chris Cosner,et al.  Threshold behavior and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons , 1984 .

[21]  Robert A. Gardner Existence and stability of travelling wave solutions of competition models: A degree theoretic approach , 1982 .

[22]  Xinfu Chen,et al.  Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations , 1997, Advances in Differential Equations.

[23]  J. M. Ball,et al.  GEOMETRIC THEORY OF SEMILINEAR PARABOLIC EQUATIONS (Lecture Notes in Mathematics, 840) , 1982 .

[24]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[25]  Paul C. Fife,et al.  A convolution model for interfacial motion: the generation and propagation of internal layers in higher space dimensions , 1998, Advances in Differential Equations.

[26]  Shui-Nee Chow,et al.  Smooth Invariant Foliations in Infinite Dimensional Spaces , 1991 .

[27]  P. Bates,et al.  Traveling Waves in a Convolution Model for Phase Transitions , 1997 .

[28]  Leon O. Chua,et al.  The CNN paradigm , 1993 .

[29]  J. Keener,et al.  The effects of discrete gap junction coupling on propagation in myocardium. , 1991, Journal of theoretical biology.

[30]  John W. Cahn,et al.  Theory of crystal growth and interface motion in crystalline materials , 1960 .

[31]  Daniel B. Henry Geometric Theory of Semilinear Parabolic Equations , 1989 .

[32]  Erik S. Van Vleck,et al.  Computation of traveling waves for spatially discrete bistable reaction-diffusion equations , 1996 .

[33]  Thomas Erneux,et al.  Propagation failure in arrays of coupled bistable chemical reactors , 1992 .

[34]  S. M. Verduyn Lunel,et al.  Stochastic and spatial structures of dynamical systems , 1996 .

[35]  John Mallet-Paret,et al.  Spatial Patterns, Spatial Chaos, and Traveling Waves in Lattice Differential Equations , 1996 .

[36]  G. Ermentrout,et al.  Multiple coupling in chains of oscillators , 1990 .

[37]  Y. Nishiura Singular Limit Approach to Stability and Bifurcation for Bistable Reaction Diffusion Systems , 1991 .

[38]  Leon O. Chua,et al.  Cellular neural networks: applications , 1988 .

[39]  L.O. Chua,et al.  Cellular neural networks , 1993, 1988., IEEE International Symposium on Circuits and Systems.

[40]  Firth Optical memory and spatial chaos. , 1988, Physical review letters.

[41]  Shui-Nee Chow,et al.  Stability and Bifurcation of Traveling Wave Solutions in Coupled Map Lattices , 1994 .

[42]  Tai-Ping Liu,et al.  Continuum shock profiles for discrete conservation laws I: Construction , 1999 .

[43]  John Mallet-Paret,et al.  Pattern Formation and Spatial Chaos in Spatially Discrete Evolution Equations , 1995 .

[44]  Sylvie Benzoni-Gavage,et al.  Semi-discrete shock profiles for hyperbolic systems of conservation laws , 1998 .

[45]  David H. Sattinger,et al.  On the stability of waves of nonlinear parabolic systems , 1976 .

[46]  D. Terman Traveling Wave Solutions Arising from a Two-Step Combustion Model , 1988 .

[47]  J. McLeod,et al.  The approach of solutions of nonlinear diffusion equations to travelling front solutions , 1977 .

[48]  G. Neubauer Der Homotopietyp der Automorphismengruppe in den Räumenlpundc0 , 1967 .

[49]  Peter W. Bates,et al.  Periodic traveling waves and locating oscillating patterns in multidimensional domains , 1999 .

[50]  D. Hankerson,et al.  Wavefronts for a cooperative tridiagonal system of differential equations , 1993 .

[51]  John Mallet-Paret,et al.  The Fredholm Alternative for Functional Differential Equations of Mixed Type , 1999 .

[52]  Shih-Hsien Yu Existence of Discrete Shock Profiles for the Lax-wendroff Scheme , 2022 .

[53]  Leon O. Chua,et al.  Spiral waves on a 2-D array of nonlinear circuits , 1993 .

[54]  Denis Noble,et al.  Simulating cardiac sinus and atrial network dynamics on the Connection Machine , 1993 .

[55]  Raymond Kapral,et al.  Discrete models for chemically reacting systems , 1991 .

[56]  B. Zinner,et al.  Stability of traveling wavefronts for the discrete Nagumo equation , 1991 .

[57]  N. Kuiper The homotopy type of the unitary group of Hilbert space , 1965 .

[58]  Leon O. Chua,et al.  PROPAGATION FAILURE IN LINEAR ARRAYS OF CHUA’S CIRCUITS , 1992 .

[59]  D. Aronson,et al.  Limit and uniqueness of discrete rotating waves in large arrays of Josephson junctions , 1994 .

[60]  Bernard J. Matkowsky,et al.  Fronts, relaxation oscillations, and period doubling in solid fuel combustion , 1987 .

[61]  X. Xin,et al.  Existence and uniqueness of travelling waves in a reaction−diffusion equation with combustion nonlinearity , 1991 .

[62]  Thomas Erneux,et al.  Propagating waves in discrete bistable reaction-diffusion systems , 1993 .

[63]  M. Golubitsky,et al.  Ponies on a merry-go-round in large arrays of Josephson junctions , 1991 .

[64]  G. Ermentrout Stable periodic solutions to discrete and continuum arrays of weakly coupled nonlinear oscillators , 1992 .

[65]  H. E. Cook,et al.  A model for diffusion on cubic lattices and its application to the early stages of ordering , 1969 .

[66]  Peter W. Bates,et al.  Invariant foliations near normally hyperbolic invariant manifolds for semiflows , 2000 .

[67]  G. Ermentrout,et al.  Existence and uniqueness of travelling waves for a neural network , 1993, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[68]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[69]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[70]  Wenxian Shen,et al.  Lifted Lattices, Hyperbolic Structures, and Topological Disorders in Coupled Map Lattices , 1996, SIAM J. Appl. Math..

[71]  John Mallet-Paret,et al.  The Global Structure of Traveling Waves in Spatially Discrete Dynamical Systems , 1999 .

[72]  John Mallet-Paret,et al.  Traveling Wave Solutions for Systems of ODEs on a Two-Dimensional Spatial Lattice , 1998, SIAM J. Appl. Math..

[73]  Henri Berestycki,et al.  Traveling Wave Solutions to Combustion Models and Their Singular Limits , 1985 .

[74]  V. Afraimovich,et al.  Traveling waves in lattice models of multidimensional and multicomponent media. II. Ergodic properties and dimension. , 1993, Chaos.

[75]  V. Afraimovich,et al.  Travelling waves in lattice models of multi-dimensional and multi-component media. I: General hyperbolic properties , 1993 .

[76]  Wenxian Shen,et al.  Dynamics in a Discrete Nagumo Equation: Spatial Topological Chaos , 1995, SIAM J. Appl. Math..

[77]  J. Alexander,et al.  A topological invariant arising in the stability analysis of travelling waves. , 1990 .

[78]  James P. Keener,et al.  Propagation and its failure in coupled systems of discrete excitable cells , 1987 .

[79]  C. Conley,et al.  An application of the generalized Morse index to travelling wave solutions of a competitive reaction-diffusion model , 1984 .