Recent advances, trends and new perspectives via enthalpy-based finite element formulations for applications to solidification problems

The present paper describes recent advances and trends in finite element developments and applications for solidification problems. In particular, in comparison to traditional methods of approach, new enthalpy-based architectures based on a generalized trapezoidal family of representations are presented which provide different perspectives, physical interpretation and solution architectures for effective numerical simulation of phase change processes encountered in solidification problems. Various numerical test models are presented and the results support the proposition for employing such formulations for general phase change applications.

[1]  Klaus-Jürgen Bathe,et al.  AN EFFICIENT ALGORITHM FOR ANALYSIS OF NONLINEAR HEAT TRANSFER WITH PHASE CHANGES , 1982 .

[2]  Kumar K. Tamma,et al.  Hybrid transfinite element modelling/analysis of non‐linear heat conduction problems involving phase change , 1988 .

[3]  Antonio Fasano,et al.  Numerical solution of phase-change problems , 1973 .

[4]  T. Belytschko,et al.  A Précis of Developments in Computational Methods for Transient Analysis , 1983 .

[5]  Mario A. Storti,et al.  Making curved interfaces straight in phase‐change problems , 1987 .

[6]  L. Carter Wellford,et al.  A finite element free boundary formulation for the problem of multiphase heat conduction , 1977 .

[7]  Graeme Fairweather,et al.  Three level Galerkin methods for parabolic equations , 1974 .

[8]  Phase-change techniques for finite element conduction codes , 1979 .

[9]  Frank Kreith,et al.  Heat transfer with melting or freezing in a wedge , 1973 .

[10]  K. Kobayashi,et al.  The Effect of Fluid Flow on the Eutectic Lamellar Spacing , 1984 .

[11]  Q. T. Pham The use of lumped capacitance in the finite-element solution of heat conduction problems with phase change , 1986 .

[12]  A. Segal,et al.  Comparison of finite element techniques for solidification problems , 1986 .

[13]  Kumar K. Tamma,et al.  An effective finite element modeling/analysis approach for dynamic thermoelasticity due to second sound effects , 1992 .

[14]  K. Tamma,et al.  A robust self‐starting explicit computational methodology for structural dynamic applications: Architecture and representations , 1990 .

[15]  Sergio Idelsohn,et al.  A temperature‐based finite element solution for phase‐change problems , 1986 .

[16]  Boris Rubinsky,et al.  Numerical Computation Using Finite Elements for the Moving Interface in Heat Transfer Problems with Phase Transformation , 1983 .

[17]  Q. T. Pham A fast, unconditionally stable finite-difference scheme for heat conduction with phase change , 1985 .

[18]  M. Lees,et al.  A Linear Three-Level Difference Scheme for Quasilinear Parabolic Equations* , 1966 .

[19]  D. R. Atthey A Finite Difference Scheme for Melting Problems , 1974 .

[20]  I. V. Samarasekera,et al.  Comparison of numerical modeling techniques for complex, two-dimensional, transient heat-conduction problems , 1984 .

[21]  Daniel R. Lynch,et al.  Unified approach to simulation on deforming elements with application to phase change problems , 1982 .

[22]  A. V. Luikov,et al.  Analytical Heat Diffusion Theory , 1969 .

[23]  Roland W. Lewis,et al.  An improved algrorithm for heat conduction problems with phase change , 1978 .

[24]  Kumar K. Tamma,et al.  EXPLICIT SECOND-ORDER ACCURATE TAYLOR-GALERKIN-BASED FINITE-ELEMENT FORMULATIONS FOR LINEAR/NONLINEAR TRANSIENT HEAT TRANSFER , 1988 .

[25]  Roland W. Lewis,et al.  Finite element solution of non‐linear heat conduction problems with special reference to phase change , 1974 .

[26]  M. Cross,et al.  Accurate solutions of moving boundary problems using the enthalpy method , 1981 .

[27]  Mark Cross,et al.  An explicit numerical method to , 1983 .

[28]  Roland W. Lewis,et al.  Finite element simulation of freezing processes in soils , 1978 .

[29]  Jean S. Roose,et al.  Modelization of phase changes by fictitious‐heat flow , 1984 .