A New Gesture Recognition System Using Weighted Dynamic Time Warping and Symbolic Aggregation Approximation Methods on Skeleton Data

Anahtar kelimeler Hareket Tanıma; Microsoft Kinect; Dinamik Zaman Bükmesi; Sembolik Birleştirme Yaklaşımı Özet Sensörler ile donatılmış derinlik kamera cihazlarının maliyetlerinin ekonomik olması nedeniyle, günümüzde kullanım alanları artmakta ve yaygınlaşmaktadır. Bu çalışmada bu tür cihazların en çok kullanılanlarından biri olan Kinect cihazından elde edilen veriler üzerinde, Ağırlıklı Dinamik Zaman Bükmesi ve Sembolik Birleştirme Yaklaşımı yöntemleri birlikte kullanılarak yeni bir hareket tanıma yöntemi geliştirilmiştir. Geliştirilen yöntem günlük hareketlerin yer aldığı veri setinde test edilmiş ve %98.15 oranında bir başarı ile günlük hareketler tanınabilmiştir.

[1]  Thi-Lan Le,et al.  Human posture recognition using human skeleton provided by Kinect , 2013, 2013 International Conference on Computing, Management and Telecommunications (ComManTel).

[2]  Sergio Guadarrama,et al.  A Probabilistic Approach to Text Generation of Human Motions extracted from Kinect Videos , 2013 .

[3]  Subhransu Maji,et al.  Classification using intersection kernel support vector machines is efficient , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[4]  Yao-Jen Chang,et al.  A Kinect-based system for physical rehabilitation: a pilot study for young adults with motor disabilities. , 2011, Research in developmental disabilities.

[5]  Wenbing Zhao,et al.  A Survey of Applications and Human Motion Recognition with Microsoft Kinect , 2015, Int. J. Pattern Recognit. Artif. Intell..

[6]  Ross A. Clark,et al.  Evaluation of foot posture using the Microsoft Kinect , 2013 .

[7]  Ali Karami,et al.  Persian sign language (PSL) recognition using wavelet transform and neural networks , 2011, Expert Syst. Appl..

[8]  Yao-Jen Chang,et al.  A Kinect-based upper limb rehabilitation system to assist people with cerebral palsy. , 2013, Research in developmental disabilities.

[9]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Tarik Arici,et al.  Gesture Recognition using Skeleton Data with Weighted Dynamic Time Warping , 2013, VISAPP.

[11]  B. Watanapa,et al.  Human gesture recognition using Kinect camera , 2012, 2012 Ninth International Conference on Computer Science and Software Engineering (JCSSE).

[12]  Tim J. Ellis,et al.  Recognizing hand gesture using Fourier descriptors , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[13]  Albert A. Rizzo,et al.  Towards pervasive physical rehabilitation using Microsoft Kinect , 2012, 2012 6th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops.

[14]  Li Wei,et al.  Experiencing SAX: a novel symbolic representation of time series , 2007, Data Mining and Knowledge Discovery.

[15]  Donald J. Berndt,et al.  Using Dynamic Time Warping to Find Patterns in Time Series , 1994, KDD Workshop.

[16]  S. Majumder,et al.  Shape, texture and local movement hand gesture features for Indian Sign Language recognition , 2011, 3rd International Conference on Trendz in Information Sciences & Computing (TISC2011).

[17]  Eamonn J. Keogh,et al.  A symbolic representation of time series, with implications for streaming algorithms , 2003, DMKD '03.

[18]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[19]  Albert A. Rizzo,et al.  Development and evaluation of low cost game-based balance rehabilitation tool using the microsoft kinect sensor , 2011, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.