Region of Human Cathelicidin LL-37 Side Chains of the Major Antimicrobial Decoding the Functional Roles of Cationic

[1]  R. Bucki,et al.  Real-time attack on single Escherichia coli cells by the human antimicrobial peptide LL-37 , 2011, Proceedings of the National Academy of Sciences.

[2]  B. Nordén,et al.  Dual functions of the human antimicrobial peptide LL-37-target membrane perturbation and host cell cargo delivery. , 2010, Biochimica et biophysica acta.

[3]  H. Cha,et al.  Disperse distribution of cationic amino acids on hydrophilic surface of helical wheel enhances antimicrobial peptide activity , 2010, Biotechnology and bioengineering.

[4]  A. Ivankin,et al.  A miniature mimic of host defense peptides with systemic antibacterial efficacy , 2010, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[5]  Guangshun Wang,et al.  Lipid clustering by three homologous arginine-rich antimicrobial peptides is insensitive to amino acid arrangement and induced secondary structure. , 2010, Biochimica et biophysica acta.

[6]  I. Altosaar,et al.  Synthetic antimicrobial peptide L8 (MHLHKTSRVTLYLL) has membrane permeabilisation and bacterial aggregation activity. , 2010, International journal of antimicrobial agents.

[7]  H. Vogel,et al.  Solution NMR studies of amphibian antimicrobial peptides: linking structure to function? , 2009, Biochimica et biophysica acta.

[8]  Richard M. Epand,et al.  Lipid Segregation Explains Selective Toxicity of a Series of Fragments Derived from the Human Cathelicidin LL-37 , 2009, Antimicrobial Agents and Chemotherapy.

[9]  Manuel N Melo,et al.  Synergistic effects of the membrane actions of cecropin-melittin antimicrobial hybrid peptide BP100. , 2009, Biophysical journal.

[10]  R. Hancock,et al.  The roles of cathelicidin LL-37 in immune defences and novel clinical applications , 2009, Current opinion in hematology.

[11]  Guangshun Wang,et al.  Structures of Human Host Defense Cathelicidin LL-37 and Its Smallest Antimicrobial Peptide KR-12 in Lipid Micelles* , 2008, Journal of Biological Chemistry.

[12]  Xia Li,et al.  APD2: the updated antimicrobial peptide database and its application in peptide design , 2008, Nucleic Acids Res..

[13]  Guangshun Wang Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample. , 2007, Biochimica et biophysica acta.

[14]  J. Lubkowski,et al.  Toward Understanding the Cationicity of Defensins , 2007, Journal of Biological Chemistry.

[15]  R. Hancock,et al.  Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies , 2006, Nature Biotechnology.

[16]  A. Schmidtchen,et al.  In Silico Identification and Biological Evaluation of Antimicrobial Peptides Based on Human Cathelicidin LL-37 , 2006, Antimicrobial Agents and Chemotherapy.

[17]  J. Pieters Faculty Opinions recommendation of Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. , 2006 .

[18]  Guangshun Wang,et al.  Solution structures of human LL-37 fragments and NMR-based identification of a minimal membrane-targeting antimicrobial and anticancer region. , 2006, Journal of the American Chemical Society.

[19]  J. J. Grote,et al.  Development of novel LL-37 derived antimicrobial peptides with LPS and LTA neutralizing and antimicrobial activities for therapeutic application , 2006, Peptides.

[20]  Guangshun Wang,et al.  Structural Biology of Antimicrobial Peptides by NMR Spectroscopy , 2006 .

[21]  Y. Ishitsuka,et al.  Lipid headgroup discrimination by antimicrobial peptide LL-37: insight into mechanism of action. , 2006, Biophysical journal.

[22]  R. Gallo,et al.  Structure-Function Relationships among Human Cathelicidin Peptides: Dissociation of Antimicrobial Properties from Host Immunostimulatory Activities , 2005, The Journal of Immunology.

[23]  T. Ohtake,et al.  Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Guangshun Wang,et al.  Correlation of Three-dimensional Structures with the Antibacterial Activity of a Group of Peptides Designed Based on a Nontoxic Bacterial Membrane Anchor* , 2005, Journal of Biological Chemistry.

[25]  Wuyuan Lu,et al.  Antibacterial Activity and Specificity of the Six Human α-Defensins , 2005, Antimicrobial Agents and Chemotherapy.

[26]  W. Shafer,et al.  Degradation of Human Antimicrobial Peptide LL-37 by Staphylococcus aureus-Derived Proteinases , 2004, Antimicrobial Agents and Chemotherapy.

[27]  J. Rothbard,et al.  Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells. , 2004, Journal of the American Chemical Society.

[28]  Shunzi Li,et al.  Individual substitution analogs of Mel(12–26), melittin's C‐terminal 15‐residue peptide: their antimicrobial and hemolytic actions , 2003, FEBS letters.

[29]  Niv Papo,et al.  Can we predict biological activity of antimicrobial peptides from their interactions with model phospholipid membranes? , 2003, Peptides.

[30]  S. Matile,et al.  Anion-mediated transfer of polyarginine across liquid and bilayer membranes. , 2003, Journal of the American Chemical Society.

[31]  Göran Carlsson,et al.  Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study , 2002, The Lancet.

[32]  M. Zasloff Antimicrobial peptides of multicellular organisms , 2002, Nature.

[33]  J. Otlewski,et al.  Amide proton temperature coefficients as hydrogen bond indicators in proteins , 2001, Journal of biomolecular NMR.

[34]  M. Dathe,et al.  Structural features of helical antimicrobial peptides: their potential to modulate activity on model membranes and biological cells. , 1999, Biochimica et biophysica acta.

[35]  H. Vogel,et al.  Diversity of antimicrobial peptides and their mechanisms of action. , 1999, Biochimica et biophysica acta.

[36]  K. Matsuzaki Why and how are peptide-lipid interactions utilized for self-defense? Magainins and tachyplesins as archetypes. , 1999, Biochimica et biophysica acta.

[37]  Y. Shai,et al.  Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by alpha-helical antimicrobial and cell non-selective membrane-lytic peptides. , 1999, Biochimica et biophysica acta.

[38]  Y. Shai,et al.  Structure and organization of the human antimicrobial peptide LL-37 in phospholipid membranes: relevance to the molecular basis for its non-cell-selective activity. , 1999, The Biochemical journal.

[39]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[40]  K. Wüthrich,et al.  Recommendations for the presentation of NMR structures of proteins and nucleic acids – IUPAC-IUBMB-IUPAB Inter-Union Task Group on the Standardization of Data Bases of Protein and Nucleic Acid Structures Determined by NMR Spectroscopy , 1998, European journal of biochemistry.

[41]  K. Berndt,et al.  Conformation-dependent Antibacterial Activity of the Naturally Occurring Human Peptide LL-37* , 1998, The Journal of Biological Chemistry.

[42]  J. Thornton,et al.  AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR , 1996, Journal of biomolecular NMR.

[43]  S J Ludtke,et al.  Membrane pores induced by magainin. , 1996, Biochemistry.

[44]  M. Billeter,et al.  MOLMOL: a program for display and analysis of macromolecular structures. , 1996, Journal of molecular graphics.

[45]  S H White,et al.  Leakage of membrane vesicle contents: determination of mechanism using fluorescence requenching. , 1995, Biophysical journal.

[46]  S. Grzesiek,et al.  NMRPipe: A multidimensional spectral processing system based on UNIX pipes , 1995, Journal of biomolecular NMR.

[47]  R A Houghten,et al.  Design of model amphipathic peptides having potent antimicrobial activities. , 1992, Biochemistry.

[48]  Paul A. Keifer,et al.  Pure absorption gradient enhanced heteronuclear single quantum correlation spectroscopy with improved sensitivity , 1992 .

[49]  T. Ganz,et al.  Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. , 1989, The Journal of clinical investigation.

[50]  T. Ganz,et al.  Concurrent assessment of inner and outer membrane permeabilization and bacteriolysis in E. coli by multiple-wavelength spectrophotometry. , 1988, Journal of immunological methods.

[51]  K. Wüthrich NMR of proteins and nucleic acids , 1988 .

[52]  Ad Bax,et al.  MLEV-17-based two-dimensional homonuclear magnetization transfer spectroscopy , 1985 .

[53]  K. Wüthrich,et al.  Improved spectral resolution in cosy 1H NMR spectra of proteins via double quantum filtering. , 1983, Biochemical and biophysical research communications.

[54]  Richard R. Ernst,et al.  Investigation of exchange processes by two‐dimensional NMR spectroscopy , 1979 .

[55]  D. S. Garrett,et al.  A common sense approach to peak picking in two-, three-, and four-dimensional spectra using automatic computer analysis of contour diagrams. 1991. , 2011, Journal of magnetic resonance.

[56]  J. White,et al.  Role of vitamin D in the enhancement of antimicrobial peptide gene expression. , 2010 .

[57]  Guangshun Wang,et al.  Biophysical analysis of membrane-targeting antimicrobial peptides: membrane properties and the design of peptides specifically targeting Gram-negative bacteria. , 2010 .

[58]  Zhe Wang,et al.  APD: the Antimicrobial Peptide Database , 2004, Nucleic Acids Res..

[59]  Charles D Schwieters,et al.  The Xplor-NIH NMR molecular structure determination package. , 2003, Journal of magnetic resonance.

[60]  Alessandro Tossi,et al.  Amphipathic, α‐helical antimicrobial peptides , 2000 .

[61]  A M Gronenborn,et al.  Determining the structures of large proteins and protein complexes by NMR. , 1998, Trends in biotechnology.

[62]  H. G. Boman,et al.  Peptide antibiotics and their role in innate immunity. , 1995, Annual review of immunology.

[63]  B. Ames ASSAY OF INORGANIC PHOSPHATE, TOTAL PHOSPHATE AND PHOSPHATASE , 1966 .

[64]  Ames,et al.  [Methods in Enzymology] Complex Carbohydrates Volume 8 || [10] Assay of inorganic phosphate, total phosphate and phosphatases , 1966 .