Dynamics of soft filaments that can stretch, shear, bend and twist

Soft slender structures are ubiquitous in natural and artificial systems and can be observed at scales that range from the nanometric to the kilometric, from polymers to space tethers. We present a general numerical approach to simulate the dynamics of filaments that, at every cross-section, can undergo all six possible modes of deformation, allowing the filament to bend, twist, shear and stretch, consistent with dynamics on the full Euclidean group SE(3). Additionally, we also account for the interaction of an active filament with itself and the environment via self-contact, surface friction and hydrodynamics. We examine the accuracy of our energy preserving and second order spatio-temporal method by means of a number of benchmark problems with known analytic solutions. Finally, we demonstrate the capabilities of our approach both on passive physical problems related to solenoid and plectoneme formation in twisted, stretched filaments, and active biophysical problems in the context of limbless locomotion on solid surfaces and in bulk liquids. All together, our approach allows for a broad computational generalization of available methods to study the dynamics of soft filaments.

[1]  R. G. Cox The motion of long slender bodies in a viscous fluid Part 1 . General theory , 1969 .

[2]  J.M.T. Thompson,et al.  Helical and Localised Buckling in Twisted Rods: A Unified Analysis of the Symmetric Case , 2000 .

[3]  Stuart S. Antman,et al.  The Theory of Rods , 1973 .

[4]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[5]  Silas Alben,et al.  Optimizing snake locomotion in the plane , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  E. Vouga,et al.  Discrete viscous threads , 2010, ACM Trans. Graph..

[7]  G. Kirchhoff,et al.  Ueber das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes. , 1859 .

[8]  J. Coyne,et al.  Analysis of the formation and elimination of loops in twisted cable , 1990 .

[9]  M. Tabor,et al.  Spontaneous Helix Hand Reversal and Tendril Perversion in Climbing Plants , 1998 .

[10]  T. Powers,et al.  The hydrodynamics of swimming microorganisms , 2008, 0812.2887.

[11]  Joel Langer,et al.  Lagrangian Aspects of the Kirchhoff Elastic Rod , 1996, SIAM Rev..

[12]  Brigitte Maier,et al.  Electrodynamics Of Continuous Media , 2016 .

[13]  Steve Marschner,et al.  A Survey on Hair Modeling: Styling, Simulation, and Rendering , 2007, IEEE Transactions on Visualization and Computer Graphics.

[14]  W. Olson,et al.  Finite element analysis of DNA supercoiling , 1993 .

[15]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[16]  D. Woolley,et al.  A study of helical and planar waves on sea urchin sperm flagella, with a theory of how they are generated. , 2001, The Journal of experimental biology.

[17]  M. Levi Composition of rotations and parallel transport , 1996 .

[18]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[19]  J. Thompson,et al.  Writhing instabilities of twisted rods: from infinite to finite length , 2002 .

[20]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[21]  Holm Altenbach,et al.  Mechanics of Generalized Continua , 2010 .

[22]  Steve Marschner,et al.  Simulating knitted cloth at the yarn level , 2008, ACM Trans. Graph..

[23]  J. Spillmann,et al.  CoRdE: Cosserat rod elements for the dynamic simulation of one-dimensional elastic objects , 2007, SCA '07.

[24]  Ernesto E. Galloni,et al.  Influence of the mass of the spring on its static and dynamic effects , 1979 .

[25]  J. Baillieul,et al.  Rotational elastic dynamics , 1987 .

[26]  J. Thompson,et al.  Instability and self-contact phenomena in the writhing of clamped rods , 2003 .

[27]  Petros Koumoutsakos,et al.  Learning to school in the presence of hydrodynamic interactions , 2015, Journal of Fluid Mechanics.

[28]  John D. Altringham,et al.  Modelling Muscle Power Output in a Swimming Fish , 1990 .

[29]  R. Shine,et al.  Aquatic and terrestrial locomotor speeds of amphibious sea-snakes (Serpentes, Laticaudidae) , 2003 .

[30]  J. Thompson,et al.  Experiments on snap buckling, hysteresis and loop formation in twisted rods , 2005 .

[31]  A. McCormick Discrete Differential Geometry and Physics of Elastic Curves , 2013 .

[32]  A. P,et al.  Mechanical Vibrations , 1948, Nature.

[33]  Alan R. Champneys,et al.  From helix to localized writhing in the torsional post-buckling of elastic rods , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[34]  L Mahadevan,et al.  Solenoids and plectonemes in stretched and twisted elastomeric filaments. , 2005, Physical review letters.

[35]  Alain Goriely,et al.  The Nonlinear Dynamics of Filaments , 1997 .

[36]  G. M.,et al.  A Treatise on the Mathematical Theory of Elasticity , 1906, Nature.

[37]  Petros Koumoutsakos,et al.  Optimization of Aircraft Wake Alleviation Schemes through an Evolution Strategy , 2010, VECPAR.

[38]  Eitan Grinspun,et al.  Discrete elastic rods , 2008, ACM Trans. Graph..

[39]  P. Koumoutsakos,et al.  Optimal shapes for anguilliform swimmers at intermediate Reynolds numbers , 2013, Journal of Fluid Mechanics.

[40]  J. Gray The mechanism of locomotion in snakes. , 1946, The Journal of experimental biology.

[41]  L. Mahadevan,et al.  How the Cucumber Tendril Coils and Overwinds , 2012, Science.

[42]  T. Powers,et al.  Twirling and whirling: viscous dynamics of rotating elastic filaments. , 1999, Physical review letters.

[43]  Jasmine A. Nirody,et al.  The mechanics of slithering locomotion , 2009, Proceedings of the National Academy of Sciences.

[44]  Riewe,et al.  Nonconservative Lagrangian and Hamiltonian mechanics. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[45]  J. Gray,et al.  The Kinetics of Locomotion of the Grass-Snake , 1950 .

[46]  B. Williams,et al.  A self-propelled biohybrid swimmer at low Reynolds number , 2014, Nature Communications.

[47]  Zengcai V. Guo,et al.  Limbless undulatory propulsion on land , 2008, Proceedings of the National Academy of Sciences.

[48]  Petros Koumoutsakos,et al.  Simulations of single and multiple swimmers with non-divergence free deforming geometries , 2011, J. Comput. Phys..

[49]  Andreas Weber,et al.  Stable Integration of the Dynamic Cosserat Equations with Application to Hair Modeling , 2008, J. WSCG.

[50]  Petros Koumoutsakos,et al.  C-start: optimal start of larval fish , 2012, Journal of Fluid Mechanics.

[51]  Archive for History of Exact Sciences , 1960, Nature.

[52]  E. Cosserat,et al.  Théorie des Corps déformables , 1909, Nature.

[53]  B. J. Torby,et al.  Advanced dynamics for engineers , 1984 .

[54]  A. Goriely Twisted Elastic Rings and the Rediscoveries of Michell's Instability , 2006 .

[55]  P. Koumoutsakos,et al.  1 Supplementary Information : Optimal morphokinematics for undulatory swimmers at intermediate Reynolds numbers , 2015 .

[56]  A.P.S. Selvadurai,et al.  Partial differential equations in mechanics , 2000 .

[57]  E. Mathieu Théorie de l'élasticité des corps solides , 1890 .

[58]  Nicole Marheineke,et al.  NUMERICAL ANALYSIS OF COSSERAT ROD AND STRING MODELS FOR VISCOUS JETS IN ROTATIONAL SPINNING PROCESSES , 2010 .

[59]  Basile Audoly,et al.  Liquid ropes: a geometrical model for thin viscous jet instabilities. , 2014, Physical review letters.

[60]  Eitan Grinspun,et al.  A discrete geometric approach for simulating the dynamics of thin viscous threads , 2012, J. Comput. Phys..

[61]  Pål Liljebäck,et al.  A survey on snake robot modeling and locomotion , 2009, Robotica.

[62]  V. Goss,et al.  The History of the Planar Elastica: Insights into Mechanics and Scientific Method , 2009 .

[63]  P. Sharma Mechanics of materials. , 2010, Technology and health care : official journal of the European Society for Engineering and Medicine.

[64]  Mattia Gazzola,et al.  Gait and speed selection in slender inertial swimmers , 2015, Proceedings of the National Academy of Sciences.

[65]  Ivan Tanev,et al.  Automated evolutionary design, robustness, and adaptation of sidewinding locomotion of a simulated snake-like robot , 2005, IEEE Transactions on Robotics.

[66]  Petros Koumoutsakos,et al.  A Stochastic Model for Microtubule Motors Describes the In Vivo Cytoplasmic Transport of Human Adenovirus , 2009, PLoS Comput. Biol..

[67]  Carter S. Haines,et al.  Artificial Muscles from Fishing Line and Sewing Thread , 2014, Science.