Effects of Compressibility on Dynamic-Stall Onset Using Large-Eddy Simulation

Large-eddy simulations of the onset of dynamic stall for a NACA 0012 airfoil, pitching at a constant rate, are performed for a chord Reynolds number of 1.0×106. Using four simulations, spanning M∞=...

[1]  M. Visbal,et al.  Extending the Reynolds Number Range of High-Frequency Control of Dynamic Stall , 2019, AIAA Journal.

[2]  M. Visbal,et al.  The onset of dynamic stall at a high, transitional Reynolds number , 2018, Journal of Fluid Mechanics.

[3]  Miguel R. Visbal,et al.  Exploration of High-Frequency Control of Dynamic Stall Using Large-Eddy Simulations , 2018, AIAA Journal.

[4]  Miguel R. Visbal,et al.  Understanding Abrupt Leading Edge Separation as a Mechanism for the Onset of Dynamic Stall , 2018 .

[5]  Miguel R. Visbal,et al.  Analysis of Dynamic Stall on a Pitching Airfoil Using High-Fidelity Large-Eddy Simulations , 2018 .

[6]  Miguel R. Visbal,et al.  High-Frequency Forcing to Delay Dynamic Stall at Relevant Reynolds Number , 2017 .

[7]  S. Girimaji,et al.  Influence of orientation on the evolution of small perturbations in compressible shear layers with inflection points. , 2017, Physical review. E.

[8]  S. Girimaji,et al.  Suppression mechanism of Kelvin-Helmholtz instability in compressible fluid flows. , 2016, Physical review. E.

[9]  Miguel R. Visbal,et al.  Numerical Exploration of Flow Control for Delay of Dynamic Stall on a Pitching Airfoil , 2014 .

[10]  Miguel R. Visbal,et al.  Analysis of the Onset of Dynamic Stall Using High-Fidelity Large-Eddy Simulations , 2014 .

[11]  Miguel R. Visbal,et al.  Comparative study of implicit and subgrid‐scale model large‐eddy simulation techniques for low‐Reynolds number airfoil applications , 2013 .

[12]  Kai Richter,et al.  Experimental investigation of dynamic stall performance for the EDI-M109 and EDI-M112 airfoils , 2013 .

[13]  Jeffrey P. Bons,et al.  Modification of Transonic Blowdown Wind Tunnel to Produce Oscillating Freestream Mach Number , 2011 .

[14]  Ying Zhou,et al.  Absorbing boundary conditions for the Euler and Navier-Stokes equations with the spectral difference method , 2010, J. Comput. Phys..

[15]  Miguel R. Visbal,et al.  Multi‐resolution implicit large eddy simulations using a high‐order overset‐grid approach , 2007 .

[16]  Miguel R. Visbal,et al.  Shock Capturing Using Compact-Differencing-Based Methods , 2005 .

[17]  Miguel R. Visbal,et al.  A time‐implicit high‐order compact differencing and filtering scheme for large‐eddy simulation , 2003 .

[18]  Miguel R. Visbal,et al.  Large-Eddy Simulation on Curvilinear Grids Using Compact Differencing and Filtering Schemes , 2002 .

[19]  Miguel R. Visbal,et al.  On the use of higher-order finite-difference schemes on curvilinear and deforming meshes , 2002 .

[20]  Jeffrey L. Young,et al.  Practical aspects of higher-order numerical schemes for wave propagation phenomena , 1999 .

[21]  Miguel R. Visbal,et al.  Further development of a Navier-Stokes solution procedure based on higher-order formulas , 1999 .

[22]  Miguel R. Visbal,et al.  High-Order-Accurate Methods for Complex Unsteady Subsonic Flows , 1999 .

[23]  Miguel R. Visbal,et al.  High-Order Schemes for Navier-Stokes Equations: Algorithm and Implementation Into FDL3DI , 1998 .

[24]  Max F. Platzer,et al.  Computational prediction of airfoil dynamic stall , 1998 .

[25]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[26]  L. Carr,et al.  Compressibility effects on dynamic stall , 1996 .

[27]  L. Carr,et al.  Competing Mechanisms of Compressible Dynamic Stall , 1996 .

[28]  M. S. Chandrasekhara,et al.  A Study of Dynamic Stall Using Real Time Interferometry , 1994 .

[29]  M. S. Chandrasekhara,et al.  Interferometric investigations of compressible dynamic stall over a transiently pitching airfoil , 1994 .

[30]  M. S. Chandrasekhara,et al.  Schlieren studies of compressibility effects on dynamic stall of transiently pitching airfoils , 1993 .

[31]  S. Lele Compact finite difference schemes with spectral-like resolution , 1992 .

[32]  M. S. Chandrasekhara,et al.  Quantitative study of unsteady compressible flow on an oscillating airfoil , 1991 .

[33]  K.-Y. Fung,et al.  Effects of compressibility on dynamic stall , 1991 .

[34]  M. S. Chandrasekhara,et al.  Flow visualization studies of the Mach number effects on the dynamic stall of an oscillating airfoil , 1990 .

[35]  Thomas L. Jackson,et al.  Absolute/convective instabilities and the convective Mach number in a compressible mixing layer , 1989 .

[36]  M. S. Chandrasekhara,et al.  Design and development of a compressible dynamic stall facility , 1989 .

[37]  L. Carr Progress in analysis and prediction of dynamic stall , 1988 .

[38]  Peter F. Lorber,et al.  Airfoil dynamic stall at constant pitch rate and high Reynolds number , 1987 .

[39]  M. Giles,et al.  Viscous-inviscid analysis of transonic and low Reynolds number airfoils , 1986 .

[40]  Pinhas Alpert,et al.  Implicit Filtering in Conjunction with Explicit Filtering , 1981 .

[41]  O. Lambert,et al.  Dynamic Stall on Advanced Airfoil Sections , 1981 .

[42]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[43]  L. W. Carr,et al.  Water Tunnel Visualizations of Dynamic Stall , 1979 .

[44]  J. Steger Implicit Finite-Difference Simulation of Flow about Arbitrary Two-Dimensional Geometries , 1978 .

[45]  R. F. Warming,et al.  An Implicit Factored Scheme for the Compressible Navier-Stokes Equations , 1977 .

[46]  Marcel Vinokur,et al.  Conservation equations of gasdynamics in curvilinear coordinate systems , 1974 .

[47]  F. X. Caradonna,et al.  An Experimental Analysis of Dynamic Stall on an Oscillating Airfoil , 1974 .

[48]  Richard V. Rhode,et al.  Correlation of flight data on limit pressure coefficients and their relation to high-speed burbling and critical tail loads , 1944 .