Operator-Split Runge-Kutta-Rosenbrock Methods for Nonhydrostatic Atmospheric Models
暂无分享,去创建一个
[1] Luca Bonaventura,et al. A Semi-implicit Semi-Lagrangian Scheme Using the Height Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows , 2000 .
[2] W. Schiesser. The Numerical Method of Lines: Integration of Partial Differential Equations , 1991 .
[3] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[4] Oliver Fuhrer,et al. Numerical consistency of metric terms in terrain-following coordinates , 2003 .
[5] Chi-Wang Shu,et al. Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..
[6] Francis X. Giraldo,et al. A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..
[7] A. Adcroft,et al. Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .
[8] Amik St.-Cyr,et al. A Fully Implicit Jacobian-Free High-Order Discontinuous Galerkin Mesoscale Flow Solver , 2009, ICCS.
[9] A. Jameson,et al. Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .
[10] J. Dudhia. A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .
[11] Shian‐Jiann Lin. A “Vertically Lagrangian” Finite-Volume Dynamical Core for Global Models , 2004 .
[12] N. Phillips,et al. Scale Analysis of Deep and Shallow Convection in the Atmosphere , 1962 .
[13] Louis J. Wicker,et al. Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .
[14] D. Lüthi,et al. A new terrain-following vertical coordinate formulation for atmospheric prediction models , 2002 .
[15] Michel Crouzeix,et al. Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques , 1980 .
[16] Adrian Sandu,et al. Benchmarking stiff ode solvers for atmospheric chemistry problems II: Rosenbrock solvers , 1997 .
[17] André Robert,et al. A SEMI-IMPLICIT SCHEME FOR GRID POINT ATMOSPHERIC MODELS OF THE PRIMITIVE EQUATIONS , 1971 .
[18] Mark A. Taylor,et al. Petascale atmospheric models for the Community Climate System Model: new developments and evaluation of scalable dynamical cores , 2008 .
[19] A. Robert. Bubble Convection Experiments with a Semi-implicit Formulation of the Euler Equations , 1993 .
[20] Meng-Sing Liou,et al. A sequel to AUSM, Part II: AUSM+-up for all speeds , 2006, J. Comput. Phys..
[21] William C. Skamarock,et al. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..
[22] Matthew R. Norman,et al. A low communication and large time step explicit finite-volume solver for non-hydrostatic atmospheric dynamics , 2011, J. Comput. Phys..
[23] Willem Hundsdorfer,et al. A Second-Order Rosenbrock Method Applied to Photochemical Dispersion Problems , 1999, SIAM J. Sci. Comput..
[24] A. J. Gadd. A split explicit integration scheme for numerical weather prediction , 1978 .
[25] P. Colella,et al. A fourth-order accurate local refinement method for Poisson's equation , 2005 .
[26] J. Varah. Stability Restrictions on Second Order, Three Level Finite Difference Schemes for Parabolic Equations , 1978 .
[27] Omar M. Knio,et al. Regime of Validity of Soundproof Atmospheric Flow Models , 2010 .
[28] M. Liou. A Sequel to AUSM , 1996 .
[29] Francis X. Giraldo,et al. A study of spectral element and discontinuous Galerkin methods for the Navier-Stokes equations in nonhydrostatic mesoscale atmospheric modeling: Equation sets and test cases , 2008, J. Comput. Phys..
[30] D. Durran. Improving the Anelastic Approximation , 1989 .
[31] H. H. Rosenbrock,et al. Some general implicit processes for the numerical solution of differential equations , 1963, Comput. J..
[32] D. Williamson,et al. A baroclinic instability test case for atmospheric model dynamical cores , 2006 .
[33] Rüdiger Weiner,et al. Partially implicit peer methods for the compressible Euler equations , 2011, J. Comput. Phys..
[34] Francis X. Giraldo,et al. Semi‐implicit time‐integrators for a scalable spectral element atmospheric model , 2005 .
[35] D. Durran. Numerical methods for wave equations in geophysical fluid dynamics , 1999 .
[36] David L. Williamson,et al. Equivalent finite volume and Eulerian spectral transform horizontal resolutions established from aqua-planet simulations , 2008 .
[37] Terry Davies,et al. Validity of anelastic and other equation sets as inferred from normal‐mode analysis , 2003 .
[38] William E. Schiesser,et al. A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab , 2009 .
[39] Phillip Colella,et al. A HIGH-ORDER FINITE-VOLUME METHOD FOR CONSERVATION LAWS ON LOCALLY REFINED GRIDS , 2011 .
[40] S. P. Nørsett,et al. Order conditions for Rosenbrock type methods , 1979 .
[41] Nash'at Ahmad,et al. Euler solutions using flux‐based wave decomposition , 2007 .
[42] P. Roe. Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .
[43] Joke Blom,et al. Time integration of the shallow water equations in spherical geometry , 2001 .
[44] Bram van Leer,et al. High-order finite-volume methods for the shallow-water equations on the sphere , 2010, J. Comput. Phys..
[45] A. Arakawa,et al. Unification of the Anelastic and Quasi-Hydrostatic Systems of Equations , 2009 .
[46] Richard C. J. Somerville,et al. On the use of a coordinate transformation for the solution of the Navier-Stokes equations , 1975 .