Collaborative information retrieval model based on fuzzy confidence network

[1]  Mounia Lalmas,et al.  A survey on the use of relevance feedback for information access systems , 2003, The Knowledge Engineering Review.

[2]  Carla Teixeira Lopes Context features and their use in information retrieval , 2009 .

[3]  Hassan Naderi,et al.  An Efficient Collaborative Information Retrieval System by Incorporating the User Profile , 2006, Adaptive Multimedia Retrieval.

[4]  Hans Peter Luhn,et al.  The Automatic Creation of Literature Abstracts , 1958, IBM J. Res. Dev..

[5]  Mohamed Nazih Omri,et al.  Complex Terminology Extraction Model from Unstructured Web Text Based Linguistic and Statistical Knowledge , 2012, Int. J. Inf. Retr. Res..

[6]  Mohamed Nazih Omri Pertinent Knowledge Extraction from a Semantic Network: Application of Fuzzy Sets Theory , 2004, Int. J. Artif. Intell. Tools.

[7]  Ahmed S.A AL-Jumaily,et al.  Automatic Queuing Model for Banking Applications , 2011 .

[8]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[9]  Ronan Cummins,et al.  The Effect of Query Length on Normalisation in Information Retrieval , 2009, AICS.

[10]  Stephen E. Robertson,et al.  On relevance weights with little relevance information , 1997, SIGIR '97.

[11]  Bich-Liên Doan,et al.  Using Context to Improve the Evaluation of Information Retrieval Systems , 2011, ArXiv.

[12]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[13]  Gregory Grefenstette,et al.  Conquering Language: Using NLP on a Massive Scale to Build High Dimensional Language Models from the Web , 2009, CICLing.

[14]  Mohamed Nazih Omri,et al.  Possibilistic Model for Relevance Feedback in Collaborative Information Retrieval , 2012, Int. J. Web Appl..

[15]  Mohamed Nazih Omri Effects of Terms Recognition Mistakes on Requests Processing for Interactive Information Retrieval , 2012, Int. J. Inf. Retr. Res..

[16]  Rose Dieng,et al.  Extraction et exploitation des annotations contextuelles , 2008, EGC.

[17]  Shyi-Ming Chen,et al.  Query expansion for document retrieval based on fuzzy rules and user relevance feedback techniques , 2006, Expert Syst. Appl..

[18]  Mohand Boughanem,et al.  Evaluation of contextual information retrieval effectiveness: overview of issues and research , 2010, Knowledge and Information Systems.

[19]  W. Bruce Croft,et al.  Analysis of long queries in a large scale search log , 2009, WSCD '09.

[20]  Rose Dieng,et al.  An Ontology-based Approach to Support Text Mining and Information Retrieval in the Biological Domain , 2007, J. Univers. Comput. Sci..

[21]  Ard W. Lazonder,et al.  Do two heads search better than one? Effects of student collaboration on web search behaviour and search outcomes , 2005, Br. J. Educ. Technol..

[22]  Wei-Ying Ma,et al.  Probabilistic query expansion using query logs , 2002, WWW '02.

[23]  Khaled M. Fouad,et al.  Semantic Retrieval Approach for Web Documents , 2011 .

[24]  Roberto Navigli,et al.  An analysis of ontology-based query expansion strategies , 2003 .

[25]  George C. Polyzos,et al.  Efficient cooperative searching on the Web: system design and evaluation , 2004, Int. J. Hum. Comput. Stud..

[26]  James Allan,et al.  A Case For Shorter Queries, and Helping Users Create Them , 2007, NAACL.