Hydrogen in plasma-nanofabrication : selective control of nanostructure heating and passivation

The possibility of independent control of the surface fluxes of energy and hydrogen-containing radicals, thus enabling selective control of the nanostructure heating and passivation, is demonstrated. In situ energy flux measurements reveal that even a small addition of H2 to low-pressure Ar plasmas leads to a dramatic increase in the energy deposition through H recombination on the surface. The heat release is quenched by a sequential addition of a hydrocarbon precursor while the surface passivation remains effective. Such selective control offers an effective mechanism for deterministic control of the growth shape, crystallinity, and density of nanostructures in plasma-aided nanofabrication. © 2010 American Institute of Physics.

[1]  Meyya Meyyappan,et al.  A review of plasma enhanced chemical vapour deposition of carbon nanotubes , 2009 .

[2]  M. Keidar,et al.  Factors affecting the size and deposition rate of the cathode deposit in an anodic arc used to produce carbon nanotubes , 2008 .

[3]  Kostya Ostrikov,et al.  Plasma-aided nanofabrication: where is the cutting edge? , 2007 .

[4]  Eray S. Aydil,et al.  Mechanism of hydrogen-induced crystallization of amorphous silicon , 2002, Nature.

[5]  Davide Mariotti,et al.  The production of self-organized carbon connections between Ag nanoparticles using atmospheric microplasma synthesis , 2009 .

[6]  Shuyan Xu,et al.  Self-assembly of uniform carbon nanotip structures in chemically active inductively coupled plasmas , 2004 .

[7]  D. Mariotti Nonequilibrium and effect of gas mixtures in an atmospheric microplasma , 2008, 1003.2714.

[8]  K. Ostrikov,et al.  Silicon on silicon: self-organized nanotip arrays formed in reactive Ar+H2 plasmas , 2010, Nanotechnology.

[9]  Gmw Gerrit Kroesen,et al.  The energy balance at substrate surfaces during plasma processing , 2001 .

[10]  Michael Keidar,et al.  Increasing the length of single-wall carbon nanotubes in a magnetically enhanced arc discharge , 2008 .

[11]  J. D. Long,et al.  Plasma-assisted self-sharpening of platelet-structured single-crystalline carbon nanocones , 2007 .

[12]  Miran Mozetic,et al.  Nanowire sensor response to reactive gas environment , 2008 .

[13]  Igor Levchenko,et al.  Plasma/ion-controlled metal catalyst saturation: Enabling simultaneous growth of carbon nanotube/nanocone arrays , 2008 .

[14]  Wei-Hung Chiang,et al.  Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning Ni(x)Fe(1-x) nanoparticles. , 2009, Nature materials.

[15]  K. Ostrikov,et al.  Deterministic plasma-aided synthesis of high-quality nanoislanded nc-SiC films , 2007 .

[16]  Kostya Ostrikov,et al.  Colloquium: Reactive plasmas as a versatile nanofabrication tool , 2005 .

[17]  Elizabeth C. Dickey,et al.  Bulk synthesis of silicon nanowires using a low-temperature vapor–liquid–solid method , 2001 .

[18]  Igor Levchenko,et al.  Plasma-assisted self-organized growth of uniform carbon nanocone arrays , 2007 .

[19]  H. Schwarz,et al.  Chemische Ionisation—ein stark Bedeutung gewinnendes massenspektrometrisches Analysenverfahren , 1978 .

[20]  M. Keidar,et al.  Modes of nanotube growth in plasmas and reasons for single-walled structure , 2008 .

[21]  H. Kersten,et al.  Angularly and Spatially Resolved Measurements of the Energy Flux in an RF Plasma Using a Thermal Probe , 2009 .

[22]  K. Ostrikov,et al.  Carbon saturation of arrays of Ni catalyst nanoparticles of different size and pattern uniformity on a silicon substrate , 2008, Nanotechnology.

[23]  K. Ostrikov,et al.  Ion-assisted precursor dissociation and surface diffusion : enabling rapid, low-temperature growth of carbon nanofibers , 2007 .