The Mechanism of Burn‐in Loss in a High Efficiency Polymer Solar Cell

Degradation in a high efficiency polymer solar cell is caused by the formation of states in the bandgap. These states increase the energetic disorder in the system. The power conversion efficiency loss does not occur when current is run through the device in the dark but occurs when the active layer is photo-excited.

[1]  Electron-only diodes of poly(dialkoxy-p-phenylene vinylene) using hole-blocking bottom electrodes , 2006 .

[2]  Nelson E. Coates,et al.  Bulk heterojunction solar cells with internal quantum efficiency approaching 100 , 2009 .

[3]  Nelson E. Coates,et al.  Charge carrier photogeneration and decay dynamics in the poly(2,7-carbazole) copolymer PCDTBT and in bulk heterojunction composites with PC 70 BM , 2010 .

[4]  Andrés J. García,et al.  Influence of the hole-transport layer on the initial behavior and lifetime of inverted organic photovoltaics , 2011 .

[5]  K. Haenen,et al.  Absorption phenomena in organic thin films for solar cell applications investigated by photothermal deflection spectroscopy , 2005 .

[6]  Peter Mark,et al.  Space‐Charge‐Limited Currents in Organic Crystals , 1962 .

[7]  S. Forrest,et al.  Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. , 2009, Journal of the American Chemical Society.

[8]  W. R. Salaneck,et al.  Polymer surfaces and interfaces in light-emitting devices , 1998 .

[9]  René A. J. Janssen,et al.  Characterization of polymer solar cells by TOF-SIMS depth profiling , 2003 .

[10]  Yang Yang,et al.  Polymer solar cells with enhanced open-circuit voltage and efficiency , 2009 .

[11]  Xiong Gong,et al.  Efficient, Air‐Stable Bulk Heterojunction Polymer Solar Cells Using MoOx as the Anode Interfacial Layer , 2011, Advanced materials.

[12]  Alberto Salleo,et al.  Morphology‐Dependent Trap Formation in High Performance Polymer Bulk Heterojunction Solar Cells , 2011 .

[13]  Xiaoniu Yang,et al.  Relating the Morphology of Poly(p‐phenylene vinylene)/Methanofullerene Blends to Solar‐Cell Performance , 2004 .

[14]  D. Kondakov,et al.  5.2: Probing Chemical Instability of Aromatic Hydrocarbons in Operating OLEDs , 2010 .

[15]  Donal D. C. Bradley,et al.  Space-charge limited conduction with traps in poly(phenylene vinylene) light emitting diodes , 1997 .

[16]  R. J. Kline,et al.  Structural Origin of Gap States in Semicrystalline Polymers and the Implications for Charge Transport , 2010, 1012.2240.

[17]  C. Tanford Macromolecules , 1994, Nature.

[18]  Christoph J. Brabec,et al.  Bimolecular Crystals of Fullerenes in Conjugated Polymers and the Implications of Molecular Mixing for Solar Cells , 2009 .

[19]  Miller,et al.  Defect quenching of conjugated polymer luminescence. , 1994, Physical review letters.

[20]  F. J. Esselink,et al.  Transmission electron microscopy study of the indium/P3OT and aluminium/P3OT interfaces (P3OT is poly(3-octylthiophene)) , 1995 .

[21]  L. De Schepper,et al.  Observation of the subgap optical absorption in polymer-fullerene blend solar cells , 2006 .

[22]  J. Brédas,et al.  Steric control of the donor/acceptor interface: implications in organic photovoltaic charge generation. , 2011, Journal of the American Chemical Society.

[23]  E. W. Meijer,et al.  Two-dimensional charge transport in self-organized, high-mobility conjugated polymers , 1999, Nature.

[24]  Agnès Rivaton,et al.  Photo- and thermo-oxidation of poly(p-phenylene-vinylene) and phenylene-vinylene oligomer , 2011 .

[25]  Gang Li,et al.  For the Bright Future—Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4% , 2010, Advanced materials.

[26]  J. E. Pemberton,et al.  Model aluminum-poly(p-phenylenevinylene) interfaces studied by surface raman spectroscopy. , 2003, Journal of the American Chemical Society.

[27]  Xiong Gong,et al.  Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology , 2005 .

[28]  Klavs F. Jensen,et al.  Photo-oxidation of polymers used in electroluminescent devices , 1995 .

[29]  R. Friend,et al.  Nature of Non-emissive Black Spots in Polymer Light-Emitting Diodes by In-Situ Micro-Raman Spectroscopy , 2002 .

[30]  Franky So,et al.  Degradation Mechanisms in Small‐Molecule and Polymer Organic Light‐Emitting Diodes , 2010, Advanced materials.

[31]  J. Nelson,et al.  Effects of Photo‐oxidation on the Performance of Poly[2‐methoxy‐5‐(3′,7′‐dimethyloctyloxy)‐1,4‐phenylene vinylene]:[6,6]‐Phenyl C61‐Butyric Acid Methyl Ester Solar Cells , 2006 .

[32]  M. Andersson,et al.  A planar copolymer for high efficiency polymer solar cells. , 2009, Journal of the American Chemical Society.

[33]  L. Liao,et al.  Operating lifetime recovery in organic light-emitting diodes having an azaaromatic hole-blocking/electron-transporting layer , 2008 .

[34]  P. Blom,et al.  Trap-limited electron transport in disordered semiconducting polymers , 2007 .

[35]  S. Girois,et al.  Polym. Degrad. Stab. , 1996 .

[36]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[37]  R. Annan Photovoltaics. , 1985, Science.

[38]  Zhenan Bao,et al.  Effects of Thermal Annealing Upon the Morphology of Polymer–Fullerene Blends , 2010 .

[39]  J. J. M. Vleggaar,et al.  Electron and hole transport in poly(p‐phenylene vinylene) devices , 1996 .

[40]  Garry Rumbles,et al.  Pathways for the degradation of organic photovoltaic P3HT:PCBM based devices , 2008 .

[41]  Dong Hoon Lee,et al.  Origin of high mobility within an amorphous polymeric semiconductor : Space-charge-limited current and trap distribution , 2008 .

[42]  F. Krebs,et al.  Analysis of the failure mechanism for a stable organic photovoltaic during 10 000 h of testing , 2007 .

[43]  Jenny Nelson,et al.  Morphology evolution via self-organization and lateral and vertical diffusion in polymer:fullerene solar cell blends. , 2008, Nature materials.

[44]  Mario Leclerc,et al.  A Low‐Bandgap Poly(2,7‐Carbazole) Derivative for Use in High‐Performance Solar Cells , 2007 .

[45]  Yongli Gao SURFACE ANALYTICAL STUDIES OF INTERFACE FORMATION IN ORGANIC LIGHT-EMITTING DEVICES , 1999 .

[46]  R. J. Kline,et al.  X-ray scattering study of thin films of poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene). , 2007, Journal of the American Chemical Society.

[47]  R. W. Gymer,et al.  Indium diffusion in model polymer light-emitting diodes , 2000 .

[48]  S. Beaupré,et al.  High Efficiency Polymer Solar Cells with Long Operating Lifetimes , 2011 .

[49]  C. Brabec,et al.  Flexible organic P3HT:PCBM bulk-heterojunction modules with more than 1 year outdoor lifetime , 2008 .

[50]  William C. Lenhart,et al.  Operational degradation of organic light-emitting diodes: Mechanism and identification of chemical products , 2007 .

[51]  R. Coehoorn,et al.  Electron transport in polyfluorene-based sandwich-type devices: Quantitative analysis of the effects of disorder and electron traps , 2009 .

[52]  V. Dyakonov,et al.  Trap-limited hole mobility in semiconducting poly(3-hexylthiophene) , 2004 .

[53]  John R. Reynolds,et al.  Dithienogermole as a fused electron donor in bulk heterojunction solar cells. , 2011, Journal of the American Chemical Society.

[54]  Shinuk Cho,et al.  A Thermally Stable Semiconducting Polymer , 2010, Advanced materials.

[55]  Garry Rumbles,et al.  Photoinduced Degradation of Polymer and Polymer–Fullerene Active Layers: Experiment and Theory , 2010 .

[56]  R. Coehoorn,et al.  Electron transport in the organic small-molecule material BAlq — the role of correlated disorder and traps , 2010 .

[57]  M. Kiskinova,et al.  Degradation of organic light-emitting diodes under different environment at high drive conditions , 2007 .

[58]  Xu,et al.  Degradation mechanism of small molecule-based organic light-emitting devices , 1999, Science.

[59]  Helmut Neugebauer,et al.  Flexible, long-lived, large-area, organic solar cells , 2007 .

[60]  Ole Hagemann,et al.  Photochemical stability of π-conjugated polymers for polymer solar cells: a rule of thumb , 2011 .

[61]  Akira J. Ikushima,et al.  Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy , 1994 .

[62]  Frank Nüesch,et al.  Water Vapor and Oxygen Degradation Mechanisms in Organic Light Emitting Diodes , 2001 .

[63]  Luping Yu,et al.  A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. , 2010, Accounts of chemical research.

[64]  Robert J. Davis,et al.  Surface Raman spectroscopy of the interface of tris-(8-hydroxyquinoline) aluminum with Mg. , 2009, Journal of the American Chemical Society.

[65]  Xiaoniu Yang,et al.  Morphology and Thermal Stability of the Active Layer in Poly(p-phenylenevinylene)/Methanofullerene Plastic Photovoltaic Devices , 2004 .

[66]  Agnès Rivaton,et al.  Light-induced degradation of the active layer of polymer-based solar cells , 2010 .

[67]  M. Lampert,et al.  Current injection in solids , 1970 .

[68]  D. Ginley,et al.  Impact of contact evolution on the shelf life of organic solar cells , 2009 .

[69]  Carole Sentein,et al.  Accelerated lifetime measurements of P3HT:PCBM solar cells , 2006 .

[70]  P. Destruel,et al.  XPS and sputtering study of the Alq3/electrode interfaces in organic light emitting diodes , 2001 .

[71]  W. Warta,et al.  Solar cell efficiency tables (version 36) , 2010 .

[72]  Agnès Rivaton,et al.  The mechanism of photo- and thermooxidation of poly(3-hexylthiophene) (P3HT) reconsidered , 2009 .

[73]  P. Blom,et al.  Trap-free electron transport in poly(p-phenylene vinylene) by deactivation of traps with n-type doping , 2010 .

[74]  Jean-Luc Brédas,et al.  Exciton-dissociation and charge-recombination processes in pentacene/C60 solar cells: theoretical insight into the impact of interface geometry. , 2009, Journal of the American Chemical Society.

[75]  Pierre M Beaujuge,et al.  Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. , 2010, Journal of the American Chemical Society.