A korarchaeal genome reveals insights into the evolution of the Archaea

The candidate division Korarchaeota comprises a group of uncultivated microorganisms that, by their small subunit rRNA phylogeny, may have diverged early from the major archaeal phyla Crenarchaeota and Euryarchaeota. Here, we report the initial characterization of a member of the Korarchaeota with the proposed name, “Candidatus Korarchaeum cryptofilum,” which exhibits an ultrathin filamentous morphology. To investigate possible ancestral relationships between deep-branching Korarchaeota and other phyla, we used whole-genome shotgun sequencing to construct a complete composite korarchaeal genome from enriched cells. The genome was assembled into a single contig 1.59 Mb in length with a G + C content of 49%. Of the 1,617 predicted protein-coding genes, 1,382 (85%) could be assigned to a revised set of archaeal Clusters of Orthologous Groups (COGs). The predicted gene functions suggest that the organism relies on a simple mode of peptide fermentation for carbon and energy and lacks the ability to synthesize de novo purines, CoA, and several other cofactors. Phylogenetic analyses based on conserved single genes and concatenated protein sequences positioned the korarchaeote as a deep archaeal lineage with an apparent affinity to the Crenarchaeota. However, the predicted gene content revealed that several conserved cellular systems, such as cell division, DNA replication, and tRNA maturation, resemble the counterparts in the Euryarchaeota. In light of the known composition of archaeal genomes, the Korarchaeota might have retained a set of cellular features that represents the ancestral archaeal form.

[1]  C. Brunk,et al.  Quantitative Measure of Small-Subunit rRNA Gene Sequences of the Kingdom Korarchaeota , 1998, Applied and Environmental Microbiology.

[2]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[3]  D. Söll,et al.  Gln-tRNAGln Formation from Glu-tRNAGln Requires Cooperation of an Asparaginase and a Glu-tRNAGln Kinase* , 2005, Journal of Biological Chemistry.

[4]  Deborah S. Kelley,et al.  Incidence and Diversity of Microorganisms within the Walls of an Active Deep-Sea Sulfide Chimney , 2003, Applied and Environmental Microbiology.

[5]  M. Sogin,et al.  Microbial Diversity of Hydrothermal Sediments in the Guaymas Basin: Evidence for Anaerobic Methanotrophic Communities , 2002, Applied and Environmental Microbiology.

[6]  K. Nealson,et al.  Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk , 2003, Applied and Environmental Microbiology.

[7]  Hidetoshi Shimodaira An approximately unbiased test of phylogenetic tree selection. , 2002, Systematic biology.

[8]  M. Nishiyama,et al.  A prokaryotic gene cluster involved in synthesis of lysine through the amino adipate pathway: a key to the evolution of amino acid biosynthesis. , 1999, Genome research.

[9]  C. V. Jongeneel,et al.  The M-Coffee web server: a meta-method for computing multiple sequence alignments by combining alternative alignment methods , 2007, Nucleic Acids Res..

[10]  E. Koonin,et al.  Clusters of orthologous genes for 41 archaeal genomes and implications for evolutionary genomics of archaea , 2007, Biology Direct.

[11]  M. Fenner Genome sequence of Thermofilum pendens reveals an exceptional loss of biosynthetic pathways without genome reduction , 2008 .

[12]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[13]  Jay Z. Parrish,et al.  Mitochondrial endonuclease G is important for apoptosis in C. elegans , 2001, Nature.

[14]  H. Philippe,et al.  Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model , 2007, BMC Evolutionary Biology.

[15]  Dieter Söll,et al.  The genome of Nanoarchaeum equitans: Insights into early archaeal evolution and derived parasitism , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Prieur,et al.  Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 degrees N). , 2003, Environmental microbiology.

[17]  S. Datta,et al.  Whole-Genome DNA Microarray Analysis of a Hyperthermophile and an Archaeon: Pyrococcus furiosus Grown on Carbohydrates or Peptides , 2003, Journal of bacteriology.

[18]  M. Adams,et al.  Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[19]  C. Takacs-Vesbach,et al.  16S rRNA phylogenetic investigation of the candidate division "Korarchaeota". , 2006, Applied and environmental microbiology.

[20]  Olivier Poch,et al.  Comparative analysis of ribosomal proteins in complete genomes: an example of reductive evolution at the domain scale. , 2002, Nucleic acids research.

[21]  K. Horikoshi,et al.  Genetic diversity of archaea in deep-sea hydrothermal vent environments. , 1999, Genetics.

[22]  M. Adams,et al.  Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. , 1993, Biochimica et biophysica acta.

[23]  P. Forterre,et al.  Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota , 2008, Nature Reviews Microbiology.

[24]  E. Koonin,et al.  GINS, a central nexus in the archaeal DNA replication fork , 2006, EMBO reports.

[25]  Haruyuki Atomi,et al.  The Ribulose Monophosphate Pathway Substitutes for the Missing Pentose Phosphate Pathway in the Archaeon Thermococcus kodakaraensis , 2006, Journal of bacteriology.

[26]  John R Spear,et al.  Phylogenetic diversity and ecology of environmental Archaea. , 2005, Current opinion in microbiology.

[27]  P. Siguier,et al.  Insertion Sequence Diversity in Archaea , 2007, Microbiology and Molecular Biology Reviews.

[28]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[29]  Thomas J Naughton,et al.  Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified , 2006, BMC Evolutionary Biology.

[30]  H. Philippe,et al.  Acoel Flatworms Are Not Platyhelminthes: Evidence from Phylogenomics , 2007, PloS one.

[31]  N. Eis,et al.  A pivotal Archaea group , 1997, Nature.

[32]  N. Pace,et al.  Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[33]  A. Poplawski,et al.  The ftsZ gene of Haloferax mediterranei: sequence, conserved gene order, and visualization of the FtsZ ring. , 2000, Gene.

[34]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[35]  A. Reysenbach,et al.  Microbial diversity at 83°C in Calcite Springs, Yellowstone National Park: another environment where the Aquificales and "Korarchaeota" coexist , 2000, Extremophiles.

[36]  F. Rodríguez-Valera,et al.  Comparative analysis of a genome fragment of an uncultivated mesopelagic crenarchaeote reveals multiple horizontal gene transfers. , 2004, Environmental microbiology.

[37]  K. Stetter,et al.  Reclassification of the crenarchael orders and families in accordance with 16S rRNA sequence data. , 1997, International journal of systematic bacteriology.

[38]  Hao Wu,et al.  Crystal structure of the putative adapter protein MTH1859. , 2004, Journal of structural biology.

[39]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[40]  E. Koonin,et al.  Orthologs of the small RPB8 subunit of the eukaryotic RNA polymerases are conserved in hyperthermophilic Crenarchaeota and "Korarchaeota" , 2007, Biology Direct.

[41]  M. Adams,et al.  Indolepyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. , 1994, The Journal of biological chemistry.

[42]  J. Kristjánsson,et al.  Influence of Sulfide and Temperature on Species Composition and Community Structure of Hot Spring Microbial Mats , 2000, Applied and Environmental Microbiology.

[43]  Robert M. Kelly,et al.  Metabolism in hyperthermophilic microorganisms , 2004, Antonie van Leeuwenhoek.

[44]  Rodrigo Lopez,et al.  Multiple sequence alignment with the Clustal series of programs , 2003, Nucleic Acids Res..

[45]  Y. Sako,et al.  A molecular view of archaeal diversity in marine and terrestrial hot water environments , 1999 .

[46]  M. B. Allen Studies with cyanidium caldarium, an anomalously pigmented chlorophyte , 2004, Archiv für Mikrobiologie.

[47]  Robert D. Finn,et al.  Pfam: clans, web tools and services , 2005, Nucleic Acids Res..

[48]  T. Henkin Faculty Opinions recommendation of tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. , 2002 .

[49]  J. Reeve,et al.  Archaeal histones and the origin of the histone fold. , 2006, Current opinion in microbiology.

[50]  D. Stahl,et al.  Group-specific 16S rRNA hybridization probes to describe natural communities of methanogens , 1994, Applied and environmental microbiology.

[51]  R. Amann,et al.  Identifying members of the domain Archaea with rRNA-targeted oligonucleotide probes , 1994, Applied and environmental microbiology.

[52]  E. Delong,et al.  Histones in Crenarchaea , 2005, Journal of bacteriology.

[53]  B. Wickstead,et al.  Molecular Evolution of FtsZ Protein Sequences Encoded Within the Genomes of Archaea, Bacteria, and Eukaryota , 2003, Journal of Molecular Evolution.

[54]  Darren A. Natale,et al.  The COG database: an updated version includes eukaryotes , 2003, BMC Bioinformatics.

[55]  Y. Ishino,et al.  Two Family B DNA Polymerases from Aeropyrum pernix, an Aerobic Hyperthermophilic Crenarchaeote , 1999, Journal of bacteriology.

[56]  Robert H. White L-Aspartate semialdehyde and a 6-deoxy-5-ketohexose 1-phosphate are the precursors to the aromatic amino acids in Methanocaldococcus jannaschii. , 2004, Biochemistry.

[57]  R. Amann,et al.  Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations , 1990, Applied and environmental microbiology.

[58]  N. Pace,et al.  Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Mark A. Ragan,et al.  The complete genome of the crenarchaeon Sulfolobus solfataricus P2 , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  N. Pace,et al.  Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[61]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[62]  P. Stoffers,et al.  Discovery and Description of Giant Submarine Smectite Cones on the Seafloor in Eyjafjordur, Northern Iceland, and a Novel Thermal Microbial Habitat , 2001, Applied and Environmental Microbiology.

[63]  J. Kristjánsson,et al.  Species Composition of Cultivated and Noncultivated Bacteria from Short Filaments in an Icelandic Hot Spring at 88 degrees C. , 2001, Microbial ecology.

[64]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[65]  P. Forterre,et al.  Nanoarchaea: representatives of a novel archaeal phylum or a fast-evolving euryarchaeal lineage related to Thermococcales? , 2005, Genome Biology.

[66]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[67]  H. Sigel,et al.  Nickel and its surprising impact in nature , 2007 .

[68]  D. Söll,et al.  Sequence Divergence of Seryl-tRNA Synthetases in Archaea , 1998, Journal of bacteriology.

[69]  Christian Jeanthon,et al.  Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N) , 2003 .

[70]  Eugene V Koonin,et al.  Comparative genomics of the FtsK-HerA superfamily of pumping ATPases: implications for the origins of chromosome segregation, cell division and viral capsid packaging. , 2004, Nucleic acids research.

[71]  Kiyoko F. Aoki-Kinoshita,et al.  From genomics to chemical genomics: new developments in KEGG , 2005, Nucleic Acids Res..

[72]  R. Garrett,et al.  Genomic comparison of archaeal conjugative plasmids from Sulfolobus. , 2004, Archaea.

[73]  Céline Brochier,et al.  Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox , 2004, Genome Biology.

[74]  Henri Grosjean,et al.  tRNomics: analysis of tRNA genes from 50 genomes of Eukarya, Archaea, and Bacteria reveals anticodon-sparing strategies and domain-specific features. , 2002, RNA.

[75]  M. Adams,et al.  A simple energy-conserving system: Proton reduction coupled to proton translocation , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  O. Kandler,et al.  Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[77]  K. Strimmer,et al.  TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics , 2004, BMC Evolutionary Biology.

[78]  Inna Dubchak,et al.  The integrated microbial genomes (IMG) system , 2005, Nucleic Acids Res..

[79]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[80]  W. Doolittle,et al.  Cytoskeletal proteins: The evolution of cell division , 1998, Current Biology.

[81]  E. Delong,et al.  Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum , 2006, Proceedings of the National Academy of Sciences.

[82]  R. Huber,et al.  Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. , 2000, FEMS microbiology reviews.