Materials for High Temperature Electrochemical NOx Gas Sensors

Abstract Solid electrolytes are well-suited for high-temperature electrochemical devices and thus have been used in sensors for monitoring exhaust gas concentrations. Oxygen content can be measured directly using a potentiometric sensor with an oxygen-ion conductor, such as yttria-stabilized zirconia, but sensors for other exhaust gases, including NO x , require more complicated approaches, such as auxiliary electrodes for equilibrium measurements or electrocatalytic electrodes for mixed potential non-equilibrium measurements. The successful development of these sensors depends critically on the identification of electrode materials with the appropriate thermodynamic and catalytic properties. In this paper, the materials used for electrochemical NO x gas sensors are reviewed with an emphasis on potentiometric sensors, but the materials used in other approaches, such as impedancemetric and amperometric sensors, are also discussed.

[1]  D. West,et al.  Electrode Materials for Mixed‐Potential No, Sensors , 2008 .

[2]  R. J. Gallagher,et al.  The Glass Furnace Combustion and Melting User Research Facility , 2008 .

[3]  D. West,et al.  DC Electrical‐Biased, All‐Oxide Nox Sensing Elements for Use at 873K , 2008 .

[4]  N. Miura,et al.  Zirconia‐Based Gas Sensors Using Oxide Sensing Electrode for Monitoring Nox in Car Exhaust , 2008 .

[5]  S. Akbar Ceramic Sensors for the Glass Industry , 2008 .

[6]  H. Kubler Oxygen Sensor for Control of Wood Combustion: A Review , 2007 .

[7]  R. Mukundan,et al.  Mixed potential NOx sensors using thin film electrodes and electrolytes for stationary reciprocating engine type applications , 2006 .

[8]  G. Kale,et al.  High-selectivity mixed-potential NO2 sensor incorporating Au and CuO + CuCr2O4 electrode couple , 2006 .

[9]  Ralf Moos,et al.  Sensor for directly determining the exhaust gas recirculation rate—EGR sensor , 2006 .

[10]  Daisuke Terada,et al.  Mixed-potential-type zirconia-based NOx sensor using Rh-loaded NiO sensing electrode operating at high temperatures , 2006 .

[11]  Jian Wang,et al.  High-temperature operating characteristics of mixed-potential-type NO2 sensor based on stabilized-zirconia tube and NiO sensing electrode , 2006 .

[12]  G. Kale,et al.  Novel high-selectivity NO2 sensor incorporating mixed-oxide electrode , 2006 .

[13]  Fred C. Montgomery,et al.  “Total NO x ” Sensing Elements with Compositionally Identical Oxide Electrodes , 2006 .

[14]  Norio Miura,et al.  Absolute potential analysis of the mixed potential occurring at the oxide/YSZ electrode at high temperature in NOx-containing air , 2006 .

[15]  S. Licoccia,et al.  Planar electrochemical sensors based on YSZ with WO3 electrode prepared by different chemical routes , 2005 .

[16]  T. R. Armstrong,et al.  "NO-selective" NOx sensing elements for combustion exhausts , 2005 .

[17]  Eduard Llobet,et al.  Gas sensing properties of nanoparticle indium-doped WO3 thick films , 2005 .

[18]  J. Orban,et al.  Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust , 2005 .

[19]  Norio Miura,et al.  Performances of planar NO2 sensor using stabilized zirconia and NiO sensing electrode at high temperature , 2005 .

[20]  Ralf Moos,et al.  A Brief Overview on Automotive Exhaust Gas Sensors Based on Electroceramics , 2005 .

[21]  N. Miura,et al.  Effects of Different Additives on the Sensing Properties of NiO Electrode Used for Mixed-Potential-Type YSZ-based Gas Sensors , 2005 .

[22]  T. Ishihara,et al.  Amperometric NOX sensor based on oxygen pumping current by using LaGaO3-based solid electrolyte for monitoring exhaust gas , 2005 .

[23]  I. Hasegawa,et al.  Solid electrolyte type nitrogen monoxide gas sensor operating at intermediate temperature region , 2005 .

[24]  S. Cordiner,et al.  Planar non-nernstian electrochemical sensors: field test in the exhaust of a spark ignition engine , 2005 .

[25]  N. Miura,et al.  Sensing Characteristics of YSZ-Based Mixed-Potential-Type Planar NO x Sensors Using NiO Sensing Electrodes Sintered at Different Temperatures , 2005 .

[26]  Prabir K. Dutta,et al.  Temperature-controlled CO, CO2 and NOx sensing in a diesel engine exhaust stream , 2005 .

[27]  G. Kale,et al.  Novel High-Selectivity NO2 Sensor for Sensing Low-Level NO2 , 2005 .

[28]  F. Montgomery,et al.  Electrically Biased NO x Sensing Elements with Coplanar Electrodes , 2005 .

[29]  T. R. Armstrong,et al.  Use of La0.85Sr0.15CrO3 in high-temperature NOx sensing elements , 2005 .

[30]  T. Ishihara,et al.  Sensitive Amperometric NO Sensor Using LaGaO3-Based Oxide Ion Conducting Electrolyte , 2005 .

[31]  Girish M. Kale,et al.  Novel nanosized ITO electrode for mixed potential gas sensor , 2005 .

[32]  Jian Wang,et al.  NO x Sensing Characteristics of Mixed-Potential-Type Zirconia Sensor Using NiO Sensing Electrode at High Temperatures , 2005 .

[33]  E. Traversa,et al.  Zirconia‐Based Electrochemical NOx Sensors with Semiconducting Oxide Electrodes , 2005 .

[34]  Norio Miura,et al.  Improvement of sensing performances of zirconia-based total NOx sensor by attachment of oxidation-catalyst electrode , 2004 .

[35]  P. Dutta,et al.  Correlation of sensing behavior of mixed potential sensors with chemical and electrochemical properties of electrodes , 2004 .

[36]  Maria Luisa Grilli,et al.  Planar electrochemical sensors based on tape-cast YSZ layers and oxide electrodes , 2004 .

[37]  L. F. Reyes,et al.  Gas Sensing with Perovskite-like Oxides Having ABO3 and BO3 Structures , 2004 .

[38]  Yoshiaki Suda,et al.  Properties of metal doped tungsten oxide thin films for NOx gas sensors grown by PLD method combined with sputtering process , 2004 .

[39]  W. Sitte,et al.  Electrochemical device for the precise adjustment of oxygen partial pressures in a gas stream , 2004 .

[40]  G. Adachi,et al.  Total Nitrogen Oxides Gas Sensor Based on Solid Electrolytes with Refractory Oxide-Based Auxiliary Electrode , 2004 .

[41]  Maria Luisa Grilli,et al.  Sensing Mechanism of Potentiometric Gas Sensors Based on Stabilized Zirconia with Oxide Electrodes Is It Always Mixed Potential , 2004 .

[42]  J. Stetter,et al.  Modification of NASICON Solid Electrolyte for NO x Measurements , 2004 .

[43]  J. Stetter,et al.  Amperometric Sensing of NOx with Cyclic Voltammetry. , 2004 .

[44]  Sheikh A. Akbar,et al.  Ceramics for chemical sensing , 2003 .

[45]  Sheikh A. Akbar,et al.  Ceramic electrolytes and electrochemical sensors , 2003 .

[46]  G. Fisher,et al.  A surface-science-based model for the selectivity of platinum-gold alloy electrodes in zirconia-based NOx sensors , 2003 .

[47]  R. Glass,et al.  Effect of Cr2O3 electrode morphology on the nitric oxide response of a stabilized zirconia sensor , 2003 .

[48]  L. Wang,et al.  Solid-state sensors for in-line monitoring of NO2 in automobile exhaust emission , 2003 .

[49]  S. Midlam-Mohler,et al.  Ceramic-based chemical sensors, probes and field-tests in automobile engines , 2003 .

[50]  Ivan Elmi,et al.  Use of different sensing materials and deposition techniques for thin-film sensors to increase sensitivity and selectivity , 2003 .

[51]  G. Adachi,et al.  New type of nitrogen oxide sensor with multivalent cation- and anion-conducting solid electrolytes , 2003 .

[52]  Norio Miura,et al.  Impedancemetric gas sensor based on zirconia solid electrolyte and oxide sensing electrode for detecting total NOx at high temperature , 2003 .

[53]  Tadashi Nakamura,et al.  NOx decomposition mechanism on the electrodes of a zirconia-based amperometric NOx sensor , 2003 .

[54]  N. N. Toan,et al.  Gas sensing with semiconducting perovskite oxide LaFeO3 , 2003 .

[55]  S. Tsang,et al.  Ag doped WO3-based powder sensor for the detection of NO gas in air , 2003 .

[56]  E. Traversa,et al.  Study of YSZ-Based Electrochemical Sensors with WO 3 Electrodes in NO 2 and CO Environments , 2003 .

[57]  Prabir K. Dutta,et al.  Strategies for total NOx measurement with minimal CO interference utilizing a microporous zeolitic catalytic filter , 2003 .

[58]  Sheikh A. Akbar,et al.  Effects of NiO addition in WO3-based gas sensors prepared by thick film process , 2002 .

[59]  Norio Miura,et al.  High-temperature NOx sensors using zirconia solid electrolyte and zinc-family oxide sensing electrode , 2002 .

[60]  Johann Riegel,et al.  Exhaust gas sensors for automotive emission control , 2002 .

[61]  E. Traversa,et al.  Study of YSZ-based electrochemical sensors with oxide electrodes for high temperature applications , 2002 .

[62]  G. Reinhardt,et al.  Sensing small molecules with amperometric sensors , 2002 .

[63]  P. Moseley,et al.  Gas sensing properties of the mixed molybdenum tungsten oxide, W0.9Mo0.1O3 , 2002 .

[64]  Norio Miura,et al.  Impedance-based total-NOx sensor using stabilized zirconia and ZnCr2O4 sensing electrode operating at high temperature , 2002 .

[65]  Norio Miura,et al.  Mixed potential type sensor using stabilized zirconia and ZnFe2O4 sensing electrode for NOx detection at high temperature , 2002 .

[66]  S. Akbar,et al.  Microporous zeolite modified yttria stabilized zirconia (YSZ) sensors for nitric oxide (NO) determination in harsh environments , 2002 .

[67]  Ellen Ivers-Tiffée,et al.  Principles of solid state oxygen sensors for lean combustion gas control , 2001 .

[68]  Dae-Sik Lee,et al.  Environmental gas sensors , 2001 .

[69]  N. Yamazoe,et al.  Stabilized zirconia-based NOx sensor using ZnFe2O4 sensing electrode , 2001 .

[70]  M. L. Grilli,et al.  Electrochemical NOx Sensors Based on Interfacing Nanosized LaFeO3 Perovskite-Type Oxide and Ionic Conductors , 2001 .

[71]  F. Ménil,et al.  Nitrogen monoxide detection with a planar spinel coated amperometric sensor , 2001 .

[72]  R. Moos,et al.  A new potentiometric NO sensor based on a NO+ cation conducting ceramic membrane , 2001 .

[73]  Maria Luisa Grilli,et al.  The NO2 response of solid electrolyte sensors made using nano-sized LaFeO3 electrodes , 2001 .

[74]  H. Wiemhöfer,et al.  Investigations towards the use of Gd0.7Ca0.3CoOx as membrane in an exhaust gas sensor for NOx , 2001 .

[75]  Norio Miura,et al.  Potentiometric NOx sensor based on stabilized zirconia and NiCr2O4 sensing electrode operating at high temperatures , 2001 .

[76]  W. Göpel,et al.  Multi-electrode zirconia electrolyte amperometric sensors , 2000 .

[77]  E. Wachsman,et al.  Electrocatalytic reduction of NOx on La1−xAxB1−yB′yO3−δ: evidence of electrically enhanced activity , 2000 .

[78]  W. Göpel,et al.  Trends in the development of solid state amperometric and potentiometric high temperature sensors , 2000 .

[79]  Norio Miura,et al.  Progress in mixed-potential type devices based on solid electrolyte for sensing redox gases , 2000 .

[80]  W. Göpel,et al.  A novel thick film sensor for simultaneous O2 and NO monitoring in exhaust gases , 2000 .

[81]  Claude Lucat,et al.  Critical review of nitrogen monoxide sensors for exhaust gases of lean burn engines , 2000 .

[82]  Norio Miura,et al.  Stabilized zirconia-based sensors using WO3 electrode for detection of NO or NO2 , 2000 .

[83]  Wolfgang Göpel,et al.  Tubular amperometric high-temperature sensors: simultaneous determination of oxygen, nitrogen oxides and combustible components , 2000 .

[84]  W. Göpel,et al.  Selectivity-optimization of planar amperometric multi-electrode sensors: identification of O2, NOx and combustible gases in exhausts at high temperatures , 2000 .

[85]  F. Ménil,et al.  Nitrogen-monoxide sensing with a commercial zirconia lambda gauge biased in amperometric mode , 2000 .

[86]  N. Yamazoe,et al.  Approach to High‐performance Electrochemical NOx Sensors Based on Solid Electrolytes , 1999 .

[87]  John F. Currie,et al.  Micromachined thin film solid state electrochemical CO2, NO2 and SO2 gas sensors , 1999 .

[88]  N. Yamazoe,et al.  Solid‐State Amperometric Sensor Based on a Sodium Ion Conductor for Detection of Total NOx in an Atmospheric Environment. , 1999 .

[89]  T. Yamamoto,et al.  Nitrogen Monoxide Sensing with Nitrosonium Ion Conducting Solid Electrolytes , 1999 .

[90]  N. Yamazoe,et al.  Solid‐State Amperometric Sensor Based on a Sodium Ion Conductor for Detection of Total NO x in an Atmospheric Environment , 1999 .

[91]  Bertrand Lemire,et al.  Long Term Stable NOx Sensor with Integrated In-Connector Control Electronics , 1999 .

[92]  Norio Miura,et al.  Selective detection of NO by using an amperometric sensor based on stabilized zirconia and oxide electrode , 1999 .

[93]  N. Yamazoe,et al.  Potentiometric Gas Sensors for Oxidic Gases , 1998 .

[94]  Norio Miura,et al.  HIGH-TEMPERATURE POTENTIOMETRIC/AMPEROMETRIC NOX SENSORS COMBINING STABILIZED ZIRCONIA WITH MIXED-METAL OXIDE ELECTRODE , 1998 .

[95]  Norio Miura,et al.  A COMPACT SOLID-STATE AMPEROMETRIC SENSOR FOR DETECTION OF NO2 IN PPB RANGE , 1998 .

[96]  T. Hibino,et al.  NOx detection using the electrolysis of water vapour in a YSZ cell: Part I. NOx detection , 1998 .

[97]  Wolfgang Göpel,et al.  Gas analysis with arrays of solid state electrochemical sensors: implications to monitor HCs and NOx in exhausts , 1996 .

[98]  Ingemar Lundström,et al.  Approaches and mechanisms to solid state based sensing , 1996 .

[99]  Norio Miura,et al.  Stabilized zirconia-based sensor using oxide electrode for detection of NOx in high-temperature combustion-exhausts , 1996 .

[100]  Norio Miura,et al.  Mixed potential type NO{sub x} sensor based on stabilized zirconia and oxide electrode , 1996 .

[101]  N. Yamazoe,et al.  Stabilized zirconia-based NOx sensor operative at high temperature , 1995 .

[102]  N. Yamazoe,et al.  Tungsten oxide-based semiconductor sensor for detection of nitrogen oxides in combustion exhaust , 1993 .

[103]  Takayuki Suzuki,et al.  Development of a thin-film oxygen sensor for combustion control of gas appliances , 1993 .

[104]  Norio Miura,et al.  Use of sodium nitrite auxiliary electrode for solid electrolyte sensor to detect nitrogen oxides , 1992 .

[105]  J. N. Michaels,et al.  Multiple Charge‐Transfer Reactions in Zirconia Electrolytic Cells: NO x Reduction on Platinum , 1988 .

[106]  Werner Weppner,et al.  Solid-state electrochemical gas sensors☆ , 1987 .

[107]  A. Marzocchella,et al.  Assessment of gas‐fluidized beds mixing and hydrodynamics by zirconia sensors , 2006 .

[108]  Jooho Moon,et al.  Electrochemical decomposition of NO over composite electrodes on YSZ electrolyte , 2006 .

[109]  E. Bartolomeo,et al.  YSZ-based electrochemical sensors: From materials preparation to testing in the exhausts of an engine bench test , 2005 .

[110]  S. Cordiner,et al.  Testing Planar Gas Sensors Based on Yttria-stabilized Zirconia with Oxide Electrodes in the Exhaust Gases of a Spark Ignition Engine , 2005 .

[111]  N. Imanaka Novel multivalent cation conducting ceramics and their application , 2005 .

[112]  P. Jasiński,et al.  Lisicon solid electrolyte electrocatalytic gas sensor , 2005 .

[113]  Maria Luisa Grilli,et al.  Nano-structured perovskite oxide electrodes for planar electrochemical sensors using tape casted YSZ layers , 2004 .

[114]  Norio Miura,et al.  Development of NOx sensing devices based on YSZ and oxide electrode aiming for monitoring car exhausts , 2004 .

[115]  Rangachary Mukundan,et al.  Electrochemical Sensors for Energy and Transportation , 2004 .

[116]  Lester B. Lave,et al.  Evaluating automobile fuel/propulsion system technologies , 2003 .

[117]  U. Guth,et al.  YSZ-cells for potentiometric nitric oxide sensors , 2003 .

[118]  H. Wiemhöfer,et al.  Composites of Ce0.8Gd0.2O1.9 and Gd0.7Ca0.3CoO3−δ as oxygen permeable membranes for exhaust gas sensors , 2002 .

[119]  Sébastien Candel,et al.  Combustion control and sensors: a review , 2002 .

[120]  E. Traversa,et al.  Solid electrolyte sensors for NO2 detection without using a reference atmosphere , 2001 .

[121]  Hans-Dieter Wiemhöfer,et al.  Development of oxygen-permeable ceramic membranes for NOx-sensors , 2001 .

[122]  Toshiro Yamamoto,et al.  Performance of the NOx sensor based on mixed potential for automobiles in exhaust gases , 2001 .

[123]  E. Traversa,et al.  Solid state ceramic gas sensors based on interfacing ionic conductors with semiconducting oxides , 2000 .

[124]  Norio Miura,et al.  High-temperature sensors for NO and NO2 based onstabilized zirconiaand spinel-type oxide electrodes , 1997 .