Conductor-Discriminant Inequality for Hyperelliptic Curves in Odd Residue Characteristic

We prove an inequality between the conductor and the discriminant for all hyperelliptic curves defined over discretely valued fields $K$ with perfect residue field of characteristic not $2$. Specifically, if such a curve is given by $y^{2} = f(x)$ with $f(x) \in \mathcal{O}_{K}[x]$, and if $\mathcal{X}$ is its minimal regular model over $\mathcal{O}_{K}$, then the negative of the Artin conductor of $\mathcal{X}$ (and thus also the number of irreducible components of the special fiber of $\mathcal{X}$) is bounded above by the valuation of $\operatorname{disc}(f)$. There are no restrictions on genus of the curve or on the ramification of the splitting field of $f$. This generalizes earlier work of Ogg, Saito, Liu, and the second author.

[1]  P. Srinivasan,et al.  Explicit minimal embedded resolutions of divisors on models of the projective line , 2021, Research in Number Theory.

[2]  S. Wewers,et al.  Integral differential forms for superelliptic curves , 2020, 2003.12357.

[3]  R. Kohls Conductors of superelliptic curves , 2019 .

[4]  P. Srinivasan Conductors and minimal discriminants of hyperelliptic curves: A comparison in the tame case , 2019, 1910.08228.

[5]  Omri Faraggi,et al.  Models of hyperelliptic curves with tame potentially semistable reduction , 2019, Transactions of the London Mathematical Society.

[6]  I. Bouw,et al.  Conductor and discriminant of Picard curves , 2019, Journal of the London Mathematical Society.

[7]  T. Dokchitser,et al.  Arithmetic of hyperelliptic curves over local fields , 2018, Mathematische Annalen.

[8]  T. Dokchitser Models of curves over DVRs , 2018, 1807.00025.

[9]  S. Wewers,et al.  Explicit resolution of weak wild quotient singularities on arithmetic surfaces , 2018, 1805.09709.

[10]  P. Srinivasan Conductors and minimal discriminants of hyperelliptic curves with rational Weierstrass points , 2015, 1508.05172.

[11]  J. Rüth Models of curves and valuations , 2015 .

[12]  E. Nart,et al.  Residual ideals of MacLane valuations , 2013, 1305.0775.

[13]  I. Bouw,et al.  COMPUTING L-FUNCTIONS AND SEMISTABLE REDUCTION OF SUPERELLIPTIC CURVES , 2012, Glasgow Mathematical Journal.

[14]  S. Maugeais Relèvement des revêtements p-cycliques des courbes rationnelles semi-stables , 2003 .

[15]  Qing Liu,et al.  Algebraic Geometry and Arithmetic Curves , 2002 .

[16]  Dino J. Lorenzini,et al.  Models of Curves and Finite Covers , 1999, Compositio Mathematica.

[17]  I. Kausz In response to the article by Ivan Kausz: A discriminant and an upper bound for w2 for hyperelliptic arithmetic surfaces , 1999, Compositio Mathematica.

[18]  Takeshi Saito,et al.  Conductor, discriminant, and the Noether formula of arithmetic surfaces , 1988 .

[19]  A. J. Scholl,et al.  NON‐ARCHIMEDEAN ANALYSIS (Grundlehren der mathematischen Wissenschaften 261) , 1986 .

[20]  T. Willmore Algebraic Geometry , 1973, Nature.

[21]  S. Maclane A construction for absolute values in polynomial rings , 1936 .

[22]  T. Dokchitser,et al.  Hyperelliptic curves in odd residue characteristic , 2017 .

[23]  Brian Conrad,et al.  $J_1(p)$ has connected fibers , 2003, Documenta Mathematica.

[24]  I. Kausz A discriminant and an upper bound for ! 2 for hyperelliptic arithmetic surfaces , 1998 .

[25]  Qing Liu Conducteur et discriminant minimal de courbes de genre 2 , 1994 .