Carbon materials for electrochemical capacitors

The carbon materials used for electrochemical capacitors were reviewed and discussed the contribution of the surfaces owing to micropores and other larger pores to the capacitance and rate performance of the electric double-layer capacitors. The necessity to have an internationally accepted specification for the measurement of capacitor performance was emphasized.

[1]  F. Béguin,et al.  Electrochemical energy storage in ordered porous carbon materials , 2005 .

[2]  E. Frąckowiak,et al.  Effect of nitrogen in carbon electrode on the supercapacitor performance , 2005 .

[3]  Y. Murakami,et al.  Extremely High Pseudo-Capacitance of RuO2 Highly Dispersed on Glassy Carbon , 1998 .

[4]  Tetsuya Osaka,et al.  All‐Solid‐State Electric Double‐Layer Capacitor with Isotropic High‐Density Graphite Electrode and Polyethylene Oxide/ LiClO4 Polymer Electrolyte , 1996 .

[5]  D. Aurbach,et al.  Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions , 2001 .

[6]  A. Itoh,et al.  Preparation and characterization of carbonaceous materials containing nitrogen as electrochemical capacitor , 2007 .

[7]  J. Heath,et al.  Electrochemical Characterization of Films of Single-Walled Carbon Nanotubes and Their Possible Application in Supercapacitors , 1999 .

[8]  A. B. Fuertes,et al.  Influence of pore structure on electric double-layer capacitance of template mesoporous carbons , 2004 .

[9]  M. Toyoda,et al.  Dependence of electric double layer capacitance of activated carbons on the types of pores and their surface areas , 2008 .

[10]  M. Toyoda,et al.  Exfoliation of carbon fibers☆☆Keynote Lecture. , 2004 .

[11]  H. Hatori,et al.  Preparation and electrochemical characteristics of N-enriched carbon foam , 2007 .

[12]  Roger Parsons,et al.  The electrical double layer: recent experimental and theoretical developments , 1990 .

[13]  Gaoping Cao,et al.  Correlation of Capacitance with the Pore Structure for Nanoporous Glassy Carbon Electrodes , 2005 .

[14]  A. B. Fuertes,et al.  Performance of templated mesoporous carbons in supercapacitors , 2007 .

[15]  Masahiro Toyoda,et al.  Performance of mesoporous carbons derived from poly(vinyl alcohol) in electrochemical capacitors , 2008 .

[16]  E. Lust,et al.  Characterisation of activated nanoporous carbon for supercapacitor electrode materials , 2007 .

[17]  M. Toyoda,et al.  Exfoliated carbon fibers as an electrode for electric double layer capacitors in a 1 mol/dm3 H2SO4 electrolyte , 2004 .

[18]  S. Suematsu,et al.  Capacitor Properties and Pore Structure of Single-and Double-Walled Carbon Nanotubes , 2009 .

[19]  K. Hata,et al.  Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes , 2004, Science.

[20]  H. Hatori,et al.  Supercapacitors Prepared from Melamine-Based Carbon , 2005 .

[21]  Zhonghua Zhu,et al.  Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors , 2008 .

[22]  G. Goerigk,et al.  X-ray scattering and adsorption studies of thermally oxidized glassy carbon , 1999 .

[23]  K. Miura,et al.  High‐Capacity Electric Double‐Layer Capacitor with High‐Density‐Activated Carbon Fiber Electrodes , 2000 .

[24]  Y. Gogotsi,et al.  Synthesis, structure and porosity analysis of microporous and mesoporous carbon derived from zirconium carbide , 2005 .

[25]  N. Kasahara,et al.  Preparation of thin carbon fibers from phenol–formaldehyde polymer micro-beads dispersed in polyethylene matrix , 2000 .

[26]  R. Pietrzak,et al.  Capacitance behaviour of brown coal based active carbon modified through chemical reaction with urea , 2008 .

[27]  Deyang Qu,et al.  Studies of the activated carbons used in double-layer supercapacitors , 2002 .

[28]  M. Toyoda,et al.  Asymmetric electric double layer capacitors using carbon electrodes with different pore size distributions , 2007 .

[29]  M. S. Dresselhaus,et al.  Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes , 2001 .

[30]  S. Shiraishi Heat-Treatment and Nitrogen-Doping of Activated Carbons for High Voltage Operation of Electric Double Layer Capacitor , 2011 .

[31]  H. Teng,et al.  Nitric Acid Modification of Activated Carbon Electrodes for Improvement of Electrochemical Capacitance , 2002 .

[32]  James F. Snyder,et al.  Evaluation of Commercially Available Carbon Fibers, Fabrics, and Papers for Potential Use in Multifunctional Energy Storage Applications , 2009 .

[33]  A. Laconti,et al.  Advanced double layer capacitors , 1990 .

[34]  Huanlei Wang,et al.  High performance of nanoporous carbon in cryogenic hydrogen storage and electrochemical capacitance , 2009 .

[35]  E. Frąckowiak,et al.  Effect of pore size distribution of coal-based activated carbons on double layer capacitance , 2005 .

[36]  K. Kobayakawa,et al.  Electrochemical Behavior of Activated‐Carbon Capacitor Materials Loaded with Ruthenium Oxide , 1999 .

[37]  Y. Gogotsi,et al.  Double-Layer Capacitance of Carbide Derived Carbons in Sulfuric Acid , 2005 .

[38]  G. Lu,et al.  Mesopore-Aspect-Ratio Dependence of Ion Transport in Rodtype Ordered Mesoporous Carbon , 2008 .

[39]  H. Konno,et al.  MgO-templated nitrogen-containing carbons derived from different organic compounds for capacitor electrodes , 2010 .

[40]  A. Ōya,et al.  Electric Double Layer Capacitance of Activated Carbon Nanofibers in Ionic Liquid: EMImBF4 , 2005 .

[41]  Masahiro Toyoda,et al.  A review of the control of pore structure in MgO-templated nanoporous carbons , 2010 .

[42]  D. Zhao,et al.  Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte , 2007 .

[43]  A. Ōya,et al.  Electric Double-Layer Capacitance of Meso/Macroporous Activated Carbon Fibers Prepared by the Blending Method I. Nickel-Loaded Activated Carbon Fibers in Propylene Carbonate Solution Containing LiClO 4 Salt , 2002 .

[44]  Yury Gogotsi,et al.  Effect of pore size and surface area of carbide derived carbons on specific capacitance , 2006 .

[45]  M. Mastragostino,et al.  Capacitance response of carbons in solvent-free ionic liquid electrolytes , 2007 .

[46]  P. Simon,et al.  Hybrid Supercapacitors Based on Activated Carbons and Conducting Polymers , 2001 .

[47]  R. Hoch,et al.  High power electrochemical capacitors based on carbon nanotube electrodes , 1997 .

[48]  G. Lu,et al.  3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. , 2008, Angewandte Chemie.

[49]  G. Wallace,et al.  Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions , 2000 .

[50]  Hongda Du,et al.  The effect of pre-carbonization of mesophase pitch-based activated carbons on their electrochemical performance for electric double-layer capacitors , 2011 .

[51]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[52]  V. Ruiz,et al.  Activated carbon produced from Sasol-Lurgi gasifier pitch and its application as electrodes in supercapacitors , 2006 .

[53]  Qiuming Gao,et al.  Boron and nitrogen co-doped porous carbon and its enhanced properties as supercapacitor , 2009 .

[54]  P. Simon,et al.  Activated Carbon/Conducting Polymer Hybrid Supercapacitors , 2003 .

[55]  J. Kong,et al.  Electrochemistry at single-walled carbon nanotubes: the role of band structure and quantum capacitance. , 2006, Journal of the American Chemical Society.

[56]  Min Liu,et al.  Single-walled carbon nanotubes modified by electrochemical treatment for application in electrochemical capacitors , 2006 .

[57]  Electric double-layer capacitor characteristics of activated wood charcoals , 2004 .

[58]  A. Ōya,et al.  Double Layer Capacitance Of Porous Carbons Derived From Defluorination Of Ptfe , 2002 .

[59]  Feng Li,et al.  Anchoring Hydrous RuO2 on Graphene Sheets for High‐Performance Electrochemical Capacitors , 2010 .

[60]  Alar Jänes,et al.  Electrochemical properties of nanoporous carbon electrodes in various nonaqueous electrolytes , 2003 .

[61]  François Béguin,et al.  A High‐Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer , 2006 .

[62]  I. Moriguchi,et al.  Structure and Electrochemical Capacitance of Nitrogen-enriched Mesoporous Carbon , 2006 .

[63]  Hang Shi,et al.  Studies of activated carbons used in double-layer capacitors , 1998 .

[64]  Mykola Seredych,et al.  Surface functional groups of carbons and the effects of their chemical character, density and accessibility to ions on electrochemical performance , 2008 .

[65]  Sang Hoon Joo,et al.  Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation , 1999 .

[66]  F. Béguin,et al.  Capacitance properties of ordered porous carbon materials prepared by a templating procedure , 2004 .

[67]  I. R. Hill,et al.  Performance of experimental carbon blacks in aqueous supercapacitors , 2005 .

[68]  A. Ōya,et al.  Electric Double Layer Capacitance of Highly Porous Carbon Derived from Lithium Metal and Polytetrafluoroethylene , 2001 .

[69]  H. Oda,et al.  Modification of the oxygen-containing functional group on activated carbon fiber in electrodes of an electric double-layer capacitor , 2006 .

[70]  François Béguin,et al.  Optimisation of an asymmetric manganese oxide/activated carbon capacitor working at 2 V in aqueous medium , 2006 .

[71]  K. Hata,et al.  Compact and Light Supercapacitor Electrodes from a Surface‐Only Solid by Opened Carbon Nanotubes with 2 200 m2 g−1 Surface Area , 2010 .

[72]  W. Sugimoto,et al.  Pseudocapacitance of Molybdenum Oxide Particles Highly Dispersed on Glassy Carbon Surface , 1999 .

[73]  B. Fang,et al.  High capacity supercapacitors based on modified activated carbon aerogel , 2005 .

[74]  B. Popov,et al.  Characterization of hydrous ruthenium oxide/carbon nanocomposite supercapacitors prepared by a colloidal method , 2002 .

[75]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[76]  R. Holze,et al.  A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2 , 2009 .

[77]  J. A. Ritter,et al.  Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels , 1999 .

[78]  A. Ōya,et al.  Electric Double Layer Capacitance Performance of Porous Carbons Prepared by Defluorination of Polytetrafluoroethylene with Potassium , 2002 .

[79]  M. Ue Mobility and Ionic Association of Lithium and Quaternary Ammonium Salts in Propylene Carbonate and γ‐Butyrolactone , 1994 .

[80]  Y. Gogotsi,et al.  Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage. , 2005, Journal of the American Chemical Society.

[81]  Robert Pietrzak,et al.  Capacitance properties of multi-walled carbon nanotubes modified by activation and ammoxidation , 2006 .

[82]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[83]  M. Toyoda,et al.  Performance of Asymmetric Electric Double Layer Capacitors — Predominant Contribution of the Negative Electrode , 2008 .

[84]  H. Hatori,et al.  Electrochemical Performance of Nitrogen-Enriched Carbons in Aqueous and Non-Aqueous Supercapacitors , 2006 .

[85]  Hongda Du,et al.  Capacitive Behavior and Charge Storage Mechanism of Manganese Dioxide in Aqueous Solution Containing Bivalent Cations , 2009 .

[86]  K. Jurewicz,et al.  Ammoxidation of active carbons for improvement of supercapacitor characteristics , 2003 .

[87]  Seongyop Lim,et al.  KOH activation of carbon nanofibers , 2004 .

[88]  M. Inagaki Pores in carbon materials-importance of their control , 2009 .

[89]  K. Méténier,et al.  Supercapacitor electrodes from multiwalled carbon nanotubes , 2000 .

[90]  E. Lust,et al.  Influence of the solvent properties on the characteristics of a double layer capacitor , 2004 .

[91]  P. Ajayan,et al.  Ultrathin planar graphene supercapacitors. , 2011, Nano letters.

[92]  Keiichi Okajima,et al.  Capacitance behavior of activated carbon fibers with oxygen-plasma treatment , 2005 .

[93]  N. Shinya,et al.  Graphene and carbon nanotube composite electrodes for supercapacitors with ultra-high energy density. , 2011, Physical chemistry chemical physics : PCCP.

[94]  Chi-Chang Hu,et al.  Effects of electrolytes and electrochemical pretreatments on the capacitive characteristics of activated carbon fabrics for supercapacitors , 2004 .

[95]  K. Jurewicz,et al.  Capacitance behaviour of the ammoxidised coal , 2004 .

[96]  M. Inagaki,et al.  Exfoliation of vapor-grown graphite fibers as studied by scanning electron microscope , 1990 .

[97]  F. Béguin,et al.  Nanotubular materials for supercapacitors , 2001 .

[98]  D. Lozano‐Castelló,et al.  Influence of pore structure and surface chemistry on electric double layer capacitance in non-aqueous electrolyte , 2003 .

[99]  Hongda Du,et al.  Electrochemical properties of nanosized hydrous manganese dioxide synthesized by a self-reacting microemulsion method , 2008 .

[100]  H. Konno,et al.  High capacitance B/C/N composites for capacitor electrodes synthesized by a simple method , 2010 .

[101]  Ki Chul Park,et al.  Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors , 2007 .

[102]  Yong Jung Kim,et al.  Morphological effect on the electrochemical behavior of electric double-layer capacitors , 2001 .

[103]  G. Yushin,et al.  Electrical Double-Layer Capacitance of Zeolite-Templated Carbon in Organic Electrolyte , 2009 .

[104]  Yong Jung Kim,et al.  Correlation between the pore and solvated ion size on capacitance uptake of PVDC-based carbons , 2004 .

[105]  E. Lust,et al.  Electrochemical characteristics of nanoporous carbide-derived carbon materials in non-aqueous electrolyte solutions , 2004 .

[106]  M. Inagaki,et al.  Preparation of porous carbons from thermoplastic precursors and their performance for electric double layer capacitors , 2006 .

[107]  Jinhua Jiang,et al.  Hierarchical porous carbons with controlled micropores and mesopores for supercapacitor electrode materials , 2008 .

[108]  Masayuki Morita,et al.  An Advanced Hybrid Electrochemical Capacitor That Uses a Wide Potential Range at the Positive Electrode , 2006 .

[109]  Yong Jung Kim,et al.  Structural features necessary to obtain a high specific capacitance in electric double layer capacitors , 2004 .

[110]  M. Inagaki,et al.  Carbon-coated tungsten and molybdenum carbides for electrode of electrochemical capacitor , 2007 .

[111]  F. Béguin,et al.  Optimisation of supercapacitors using carbons with controlled nanotexture and nitrogen content , 2006 .

[112]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[113]  A. Yoshino,et al.  Development of a Lithium-Type Advanced Energy Storage Device , 2004 .

[114]  E. Frąckowiak,et al.  Electrochemical capacitors based on highly porous carbons prepared by KOH activation , 2004 .

[115]  Y. Kaburagi,et al.  Electric double layer capacitance of multi-walled carbon nanotubes and B-doping effect , 2006 .

[116]  Mathieu Toupin,et al.  A Hybrid Activated Carbon-Manganese Dioxide Capacitor using a Mild Aqueous Electrolyte , 2004 .

[117]  Huanlei Wang,et al.  Synthesis, characterization and energy-related applications of carbide-derived carbons obtained by the chlorination of boron carbide , 2009 .

[118]  V. Ruiz,et al.  Enhanced life-cycle supercapacitors by thermal treatment of mesophase-derived activated carbons , 2008 .

[119]  H. Teng,et al.  Characterization of High Porosity Carbon Electrodes Derived from Mesophase Pitch for Electric Double-Layer Capacitors , 2001 .

[120]  P. Taberna,et al.  High temperature carbon–carbon supercapacitor using ionic liquid as electrolyte , 2007 .

[121]  N. Pan,et al.  High power density supercapacitors using locally aligned carbon nanotube electrodes , 2005 .

[122]  K. Jurewicz,et al.  Ammoxidation of brown coals for supercapacitors , 2002 .

[123]  P. Taberna,et al.  Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer , 2006, Science.

[124]  Seong Chu Lim,et al.  Supercapacitors Using Single‐Walled Carbon Nanotube Electrodes , 2001 .

[125]  Seok-Hyun Lee,et al.  Use of KCl Aqueous Electrolyte for 2 V Manganese Oxide/Activated Carbon Hybrid Capacitor , 2002 .

[126]  F. Béguin,et al.  High-energy density graphite/AC capacitor in organic electrolyte , 2008 .

[127]  G. Cao,et al.  Enhanced electrochemical and structural properties of carbon cryogels by surface chemistry alteration with boron and nitrogen , 2009 .

[128]  Hsisheng Teng,et al.  Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics , 2002 .

[129]  Feng Li,et al.  Hierarchical porous nickel oxide and carbon as electrode materials for asymmetric supercapacitor , 2008 .

[130]  Pierre-Louis Taberna,et al.  Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor , 2007 .

[131]  Y. Murakami,et al.  Dip-Coated Ru-Mo-O/Ti Electrodes for Electrochemical Capacitors , 1998 .

[132]  B. Conway,et al.  The role and utilization of pseudocapacitance for energy storage by supercapacitors , 1997 .

[133]  Feng Wu,et al.  Room temperature molten salt as electrolyte for carbon nanotube-based electric double layer capacitors , 2006 .

[134]  M. S. Dresselhaus,et al.  Poly(vinylidene chloride)-Based Carbon as an Electrode Material for High Power Capacitors with an Aqueous Electrolyte , 2001 .

[135]  Nae-Lih Wu,et al.  Electrochemical capacitor of magnetite in aqueous electrolytes , 2003 .

[136]  Glenn Amatucci,et al.  Characteristics and performance of 500 F asymmetric hybrid advanced supercapacitor prototypes , 2003 .

[137]  Pierre-Louis Taberna,et al.  High power density electrodes for Carbon supercapacitor applications , 2005 .

[138]  Pierre-Louis Taberna,et al.  Microelectrode Study of Pore Size, Ion Size, and Solvent Effects on the Charge/Discharge Behavior of Microporous Carbons for Electrical Double-Layer Capacitors , 2009 .

[139]  S. Nishimura,et al.  Structural characterization and electric double layer capacitance of template carbons , 2004 .

[140]  Xin-bo Zhang,et al.  Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor , 2010 .

[141]  K. Okabe,et al.  Electric double layer capacitance of highly pure single-walled carbon nanotubes (HiPco™Buckytubes™) in propylene carbonate electrolytes , 2002 .

[142]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[143]  F. Béguin,et al.  Effects of thermal treatment of activated carbon on the electrochemical behaviour in supercapacitors , 2007 .

[144]  M. Toyoda,et al.  Pseudo-capacitance on exfoliated carbon fiber in sulfuric acid electrolyte , 2006 .

[145]  R. Holze,et al.  A cheap asymmetric supercapacitor with high energy at high power: Activated carbon//K0.27MnO2·0.6H2O , 2010 .

[146]  Marina Mastragostino,et al.  Strategies for high-performance supercapacitors for HEV , 2007 .

[147]  H. Orikasa,et al.  An easy method for the synthesis of ordered microporous carbons by the template technique , 2005 .

[148]  Andreas Züttel,et al.  Investigation of electrochemical double-layer (ECDL) capacitors electrodes based on carbon nanotubes and activated carbon materials , 2003 .

[149]  T. Kyotani,et al.  Extremely high microporosity and sharp pore size distribution of a large surface area carbon prepared in the nanochannels of zeolite Y , 2005 .

[150]  M. Toyoda,et al.  Huge electrochemical capacitance of exfoliated carbon fibers , 2003 .

[151]  J. Choma,et al.  KOH activation of mesoporous carbons obtained by soft-templating , 2008 .

[152]  B. Popov,et al.  Studies on activated carbon capacitor materials loaded with different amounts of ruthenium oxide , 2001 .

[153]  A. B. Fuertes,et al.  On the electrical double-layer capacitance of mesoporous templated carbons , 2005 .

[154]  Shuichi Ishimoto,et al.  High-Voltage Asymmetric Electrochemical Capacitor Based on Polyfluorene Nanocomposite and Activated Carbon , 2008 .

[155]  T. Osaka,et al.  Properties of Electric Double‐Layer Capacitors with Various Polymer Gel Electrolytes , 1997 .

[156]  Irene M. Plitz,et al.  A comparative study of Li-ion battery, supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications , 2003 .

[157]  J. Fricke,et al.  High surface area carbon aerogels for supercapacitors , 1998 .

[158]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[159]  D. Zhao,et al.  Nitrogen enriched mesoporous carbon spheres obtained by a facile method and its application for electrochemical capacitor , 2007 .

[160]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[161]  Yongyao Xia,et al.  A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system , 2005 .

[162]  Liangti Qu,et al.  High performance electrochemical capacitors from aligned carbon nanotube electrodes and ionic liquid electrolytes , 2009 .

[163]  K. Hata,et al.  Electrochemical doping of pure single-walled carbon nanotubes used as supercapacitor electrodes , 2008 .

[164]  Rüdiger Kötz,et al.  Capacitance limits of high surface area activated carbons for double layer capacitors , 2005 .

[165]  F. Kang,et al.  Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors , 2011 .

[166]  Guoqing Zhou,et al.  A study of activated carbon nanotubes as electrochemical super capacitors electrode materials , 2002 .

[167]  Taeghwan Hyeon,et al.  Recent Progress in the Synthesis of Porous Carbon Materials , 2006 .

[168]  T. Nakano,et al.  Nanoporous carbons from cypress II. Application to electric double layer capacitors , 2007 .

[169]  Fritz Stoeckli,et al.  The role of textural characteristics and oxygen-containing surface groups in the supercapacitor performances of activated carbons , 2006 .

[170]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[171]  Zhigang Chen,et al.  Synthesis and Electrochemical Property of Boron-Doped Mesoporous Carbon in Supercapacitor , 2008 .

[172]  H. Teng,et al.  Influence of surface oxides on the impedance behavior of carbon-based electrochemical capacitors , 2003 .

[173]  Bruce Dunn,et al.  Deposition of Ruthenium Nanoparticles on Carbon Aerogels for High Energy Density Supercapacitor Electrodes , 1997 .

[174]  Wan-Jin Lee,et al.  Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of PMDA-ODA poly(amic acid) solutions , 2004 .

[175]  Ray H. Baughman,et al.  Electrochemical Properties of Single-Wall Carbon Nanotube Electrodes , 2003 .

[176]  M. Ishikawa,et al.  Vertically aligned double-walled carbon nanotube electrode prepared by transfer methodology for electric double layer capacitor , 2008 .

[177]  Hsisheng Teng,et al.  Performance of electric double-layer capacitors using carbons prepared from phenol–formaldehyde resins by KOH etching , 2001 .

[178]  E. Frąckowiak,et al.  Templated Mesoporous Carbons for Supercapacitor Application , 2005 .

[179]  Hongda Du,et al.  Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density , 2010 .

[180]  M. Ishikawa,et al.  Aligned MWCNT Sheet Electrodes Prepared by Transfer Methodology Providing High-Power Capacitor Performance , 2007 .

[181]  M. Morita,et al.  High-energy-density hybrid electrochemical capacitor using graphitizable carbon activated with KOH for positive electrode , 2006 .

[182]  Ji Liang,et al.  Study of electrochemical capacitors utilizing carbon nanotube electrodes , 1999 .

[183]  M. Inagaki,et al.  Relationship between pore surface areas and electric double layer capacitance in non-aqueous electrolytes for air-oxidized carbon spheres , 2006 .

[184]  P. Soudan,et al.  Electrochemical Properties of Ruthenium-Based Nanocrystalline Materials as Electrodes for Supercapacitors , 2002 .

[185]  T. Kyotani,et al.  Investigation of the ion storage/transfer behavior in an electrical double-layer capacitor by using ordered microporous carbons as model materials. , 2009, Chemistry.

[186]  Catia Arbizzani,et al.  Electrode Materials for Ionic Liquid Based-Supercapacitors , 2007 .

[187]  Dolores Lozano-Castelló,et al.  ROLE OF SURFACE CHEMISTRY ON ELECTRIC DOUBLE LAYER CAPACITANCE OF CARBON MATERIALS , 2005 .