Visual Object Recognition

[1]  M. Seghier,et al.  A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. , 2003, Brain : a journal of neurology.

[2]  John H. R. Maunsell,et al.  Shape selectivity in primate lateral intraparietal cortex , 1998, Nature.

[3]  Jon Driver,et al.  Local but not long-range microstructural differences of the ventral temporal cortex in developmental prosopagnosia , 2015, Neuropsychologia.

[4]  Yaoda Xu,et al.  Neural Representation of Targets and Distractors during Object Individuation and Identification , 2010, Journal of Cognitive Neuroscience.

[5]  S. Kastner,et al.  Two hierarchically organized neural systems for object information in human visual cortex , 2008, Nature Neuroscience.

[6]  Benjamin D. Singer,et al.  Retinotopic Organization of Human Ventral Visual Cortex , 2009, The Journal of Neuroscience.

[7]  Marlene Behrmann,et al.  Impaired holistic processing of left-right composite faces in congenital prosopagnosia , 2014, Front. Hum. Neurosci..

[8]  R. Tootell,et al.  Thinking Outside the Box: Rectilinear Shapes Selectively Activate Scene-Selective Cortex , 2014, The Journal of Neuroscience.

[9]  Ha Hong,et al.  Explicit information for category-orthogonal object properties increases along the ventral stream , 2016, Nature Neuroscience.

[10]  Jennifer M. D. Yoon,et al.  Human Neuroscience , 2022 .

[11]  S. Kastner,et al.  The Functional Neuroanatomy of Object Agnosia: A Case Study , 2010, Neuron.

[12]  S. Hochstein,et al.  The reverse hierarchy theory of visual perceptual learning , 2004, Trends in Cognitive Sciences.

[13]  Ingo Kennerknecht,et al.  First report of prevalence of non‐syndromic hereditary prosopagnosia (HPA) , 2006, American journal of medical genetics. Part A.

[14]  Peter Gerhardstein,et al.  The influence of training views on infants' long-term memory for simple 3D shapes. , 2007, Developmental psychobiology.

[15]  Marlene Behrmann,et al.  Visuoperceptual deficits in letter-by-letter reading? , 2009, Neuropsychologia.

[16]  Leslie G. Ungerleider,et al.  Selective dissociation between core and extended regions of the face processing network in congenital prosopagnosia. , 2014, Cerebral cortex.

[17]  Philippe Pinel,et al.  Cortical representations of symbols, objects, and faces are pruned back during early childhood. , 2011, Cerebral cortex.

[18]  J. Gore,et al.  A Stimulus-Driven Approach to Object Identity and Location Processing in the Human Brain , 2000, Neuron.

[19]  D. Maurer Critical periods re-examined: Evidence from children treated for dense cataracts , 2017 .

[20]  Karl J. Friston,et al.  Network Interactions Explain Sensitivity to Dynamic Faces in the Superior Temporal Sulcus , 2014, Cerebral cortex.

[21]  Thomas A. Carlson,et al.  Representational dynamics of object recognition: Feedforward and feedback information flows , 2016, NeuroImage.

[22]  E. Halgren,et al.  Top-down facilitation of visual recognition. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[23]  K. Nakayama,et al.  Holistic face training enhances face processing in developmental prosopagnosia. , 2014, Brain : a journal of neurology.

[24]  Galia Avidan,et al.  Evidence for similar early but not late representation of possible and impossible objects , 2015, Front. Psychol..

[25]  Markus Graf,et al.  When Action Observation Facilitates Visual Perception: Activation in Visuo-Motor Areas Contributes to Object Recognition. , 2015, Cerebral cortex.

[26]  Merav Ahissar,et al.  On the importance of anchoring and the consequences of its impairment in dyslexia. , 2010, Dyslexia.

[27]  N. Kanwisher,et al.  A Preference for Contralateral Stimuli in Human Object- and Face-Selective Cortex , 2007, PloS one.

[28]  Linda B. Smith,et al.  Relations Among Early Object Recognition Skills: Objects and Letters , 2015, Journal of cognition and development : official journal of the Cognitive Development Society.

[29]  Thomas Schenk,et al.  No Dissociation between Perception and Action in Patient DF When Haptic Feedback is Withdrawn , 2012, The Journal of Neuroscience.

[30]  T. Allison,et al.  Face-Specific Processing in the Human Fusiform Gyrus , 1997, Journal of Cognitive Neuroscience.

[31]  Leslie G. Ungerleider,et al.  Intrinsic Structure of Visual Exemplar and Category Representations in Macaque Brain , 2013, The Journal of Neuroscience.

[32]  D. Maurer,et al.  The many faces of configural processing , 2002, Trends in Cognitive Sciences.

[33]  Doris Y. Tsao,et al.  The effect of face patch microstimulation on perception of faces and objects , 2017, Nature Neuroscience.

[34]  M. Livingstone,et al.  Behavioral and Anatomical Consequences of Early versus Late Symbol Training in Macaques , 2012, Neuron.

[35]  J. Haxby,et al.  Neural systems for recognition of familiar faces , 2007, Neuropsychologia.

[36]  K. Mitchell,et al.  Curiouser and curiouser: genetic disorders of cortical specialization. , 2011, Current opinion in genetics & development.

[37]  M. Potter,et al.  Recognition memory for a rapid sequence of pictures. , 1969, Journal of experimental psychology.

[38]  H. Bülthoff,et al.  Beyond Faces and Expertise , 2016, Psychological science.

[39]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  Ha Hong,et al.  Performance-optimized hierarchical models predict neural responses in higher visual cortex , 2014, Proceedings of the National Academy of Sciences.

[41]  Marlene Behrmann,et al.  Unraveling the distributed neural code of facial identity through spatiotemporal pattern analysis , 2011, Proceedings of the National Academy of Sciences.

[42]  Daniel L K Yamins,et al.  Neural Mechanisms Underlying Visual Object Recognition. , 2014, Cold Spring Harbor symposia on quantitative biology.

[43]  Michael J. Tarr,et al.  Size Precedes View: Developmental Emergence of Invariant Object Representations in Lateral Occipital Complex , 2015, Journal of Cognitive Neuroscience.

[44]  M. Behrmann,et al.  Acquiring long-term representations of visual classes following extensive extrastriate damage , 2006, Neuropsychologia.

[45]  A. Parker,et al.  Structural and Functional Changes across the Visual Cortex of a Patient with Visual Form Agnosia , 2013, The Journal of Neuroscience.

[46]  N. Kanwisher Functional specificity in the human brain: A window into the functional architecture of the mind , 2010, Proceedings of the National Academy of Sciences.

[47]  D. Gentner,et al.  Developmental changes in children's understanding of the similarity between photographs and their referents. , 2008, Developmental science.

[48]  Dwight J. Kravitz,et al.  High-level visual object representations are constrained by position. , 2010, Cerebral cortex.

[49]  Alina Liberman,et al.  Experience Shapes the Development of Neural Substrates of Face Processing in Human Ventral Temporal Cortex , 2015, Cerebral cortex.

[50]  N. Gaab,et al.  Atypical Sulcal Pattern in Children with Developmental Dyslexia and At-Risk Kindergarteners. , 2016, Cerebral cortex.

[51]  K. Grill-Spector,et al.  Differential development of high-level visual cortex correlates with category-specific recognition memory , 2007, Nature Neuroscience.

[52]  J. Mattingley,et al.  Abnormal fMRI Adaptation to Unfamiliar Faces in a Case of Developmental Prosopamnesia , 2007, Current Biology.

[53]  Isabel Gauthier,et al.  A meta-analysis and review of holistic face processing. , 2014, Psychological bulletin.

[54]  E. Warrington Quarterly Journal of Experimental Psychology the Selective Impairment of Semantic Memory the Selective Impairment of Semantic Memory , 2022 .

[55]  M. Behrmann,et al.  Three‐Dimensional Representations of Objects in Dorsal Cortex are Dissociable from Those in Ventral Cortex , 2017, Cerebral cortex.

[56]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[57]  D. B. Bender,et al.  Visual properties of neurons in inferotemporal cortex of the Macaque. , 1972, Journal of neurophysiology.

[58]  F. Ramus,et al.  Impaired functional differentiation for categories of objects in the ventral visual stream: A case of developmental visual impairment , 2015, Neuropsychologia.

[59]  D. Maurer,et al.  Impairment in Holistic Face Processing Following Early Visual Deprivation , 2004, Psychological science.

[60]  Tutis Vilis,et al.  Equal degrees of object selectivity for upper and lower visual field stimuli. , 2010, Journal of neurophysiology.

[61]  Justin L. Vincent,et al.  Development of the macaque face-patch system , 2017, Nature Communications.

[62]  K. Grill-Spector The neural basis of object perception , 2003, Current Opinion in Neurobiology.

[63]  N. Kanwisher,et al.  Domain specificity in visual cortex. , 2006, Cerebral cortex.

[64]  Robert W. Kentridge,et al.  Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia. , 2010, Cerebral cortex.

[65]  D. Maurer,et al.  Developmental trends in interpolation and its spatial constraints: A comparison of subjective and occluded contours , 2015, Attention, Perception, & Psychophysics.

[66]  Roberta L. Klatzky,et al.  Common Dorsal Stream Substrates for the Mapping of Surface Texture to Object Parts and Visual Spatial Processing , 2015, Journal of Cognitive Neuroscience.

[67]  T. Shallice On compensatory strategies and computational models: The case of pure alexia , 2014, Cognitive neuropsychology.

[68]  M. Bar,et al.  Magnocellular Projections as the Trigger of Top-Down Facilitation in Recognition , 2007, The Journal of Neuroscience.

[69]  Galia Avidan,et al.  Intact implicit representation of object 3D structure in object agnosia. , 2015, Journal of vision.

[70]  Giuseppe Iaria,et al.  Disconnection in prosopagnosia and face processing , 2008, Cortex.

[71]  L A Thompson,et al.  Developmental changes in the effect of dimensional salience on the discriminability of object relations. , 1998, Journal of experimental child psychology.

[72]  Bruno Rossion,et al.  Understanding face perception by means of prosopagnosia and neuroimaging. , 2014, Frontiers in bioscience.

[73]  Bruno Rossion,et al.  Holistic processing impairment can be restricted to faces in acquired prosopagnosia: evidence from the global/local Navon effect. , 2011, Journal of neuropsychology.

[74]  Galia Avidan,et al.  Representation of possible and impossible objects in the human visual cortex: Evidence from fMRI adaptation , 2013, NeuroImage.

[75]  Marlene Behrmann,et al.  Feature-based face representations and image reconstruction from behavioral and neural data , 2015, Proceedings of the National Academy of Sciences.

[76]  Jason J S Barton,et al.  Disorder of higher visual function. , 2011, Current opinion in neurology.

[77]  N. Gaab,et al.  Investigating the Influences of Language Delay and/or Familial Risk for Dyslexia on Brain Structure in 5‐Year‐Olds , 2015, Cerebral cortex.

[78]  Gareth R. Barnes,et al.  Reading therapy strengthens top–down connectivity in patients with pure alexia , 2013, Brain : a journal of neurology.

[79]  Scott P. Johnson,et al.  Development of three-dimensional object completion in infancy. , 2008, Child development.

[80]  M. Coltheart,et al.  Cognitive heterogeneity in genetically based prosopagnosia: a family study. , 2008, Journal of neuropsychology.

[81]  Z Kourtzi,et al.  Representation of Perceived Object Shape by the Human Lateral Occipital Complex , 2001, Science.

[82]  Timothy F. Brady,et al.  A review of visual memory capacity: Beyond individual items and toward structured representations. , 2011, Journal of vision.

[83]  Nancy Kanwisher,et al.  The distribution of category and location information across object-selective regions in human visual cortex , 2008, Proceedings of the National Academy of Sciences.

[84]  U. Goswami Sensory theories of developmental dyslexia: three challenges for research , 2014, Nature Reviews Neuroscience.

[85]  Galia Avidan,et al.  Impaired holistic processing in congenital prosopagnosia , 2011, Neuropsychologia.

[86]  Rannveig Ólafsdóttir,et al.  Rehabilitation of pure alexia: A review , 2013, Neuropsychological rehabilitation.

[87]  Frederic Dick,et al.  Developmental Changes in Effective Connectivity in the Emerging Core Face Network , 2010, Cerebral cortex.

[88]  I. Kovács Human development of perceptual organization , 2000, Vision Research.

[89]  Daphne Maurer,et al.  The development of fine-grained sensitivity to eye contact after 6 years of age. , 2012, Journal of experimental child psychology.

[90]  B. Rossion,et al.  Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: Converging evidence from gaze-contingency , 2011, Neuropsychologia.

[91]  R. Goebel,et al.  Individual faces elicit distinct response patterns in human anterior temporal cortex , 2007, Proceedings of the National Academy of Sciences.

[92]  R. Malach,et al.  The topography of high-order human object areas , 2002, Trends in Cognitive Sciences.

[93]  M. Behrmann,et al.  Independent representation of parts and the relations between them: evidence from integrative agnosia. , 2006, Journal of experimental psychology. Human perception and performance.

[94]  Wim Vanduffel,et al.  Retinotopy versus Face Selectivity in Macaque Visual Cortex , 2014, Journal of Cognitive Neuroscience.

[95]  Radoslaw Martin Cichy,et al.  Resolving human object recognition in space and time , 2014, Nature Neuroscience.

[96]  Janette Atkinson,et al.  Dorsal and ventral stream sensitivity in normal development and hemiplegia , 2002, Neuroreport.

[97]  Ehud Zohary,et al.  Position and Identity Information Available in fMRI Patterns of Activity in Human Visual Cortex , 2015, The Journal of Neuroscience.

[98]  M. Farah,et al.  PROSOPAMNESIA: A SELECTIVE IMPAIRMENT IN FACE LEARNING , 2000, Cognitive neuropsychology.

[99]  Masaaki Nishida,et al.  Upright face-preferential high-gamma responses in lower-order visual areas: Evidence from intracranial recordings in children , 2015, NeuroImage.

[100]  J. Ringman,et al.  Impairments in the Face-Processing Network in Developmental Prosopagnosia and Semantic Dementia , 2015, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[101]  Linda B Smith,et al.  Using the axis of elongation to align shapes: developmental changes between 18 and 24 months of age. , 2014, Journal of experimental child psychology.

[102]  David C. Plaut,et al.  ‘What’ Is Happening in the Dorsal Visual Pathway , 2016, Trends in Cognitive Sciences.

[103]  D. Maurer,et al.  Developmental changes in face processing skills. , 2003, Journal of experimental child psychology.

[104]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.

[105]  B. Franke,et al.  Molecular genetics of dyslexia: an overview. , 2013, Dyslexia.

[106]  Christian Gerlach,et al.  Visual processing in pure alexia: A case study , 2010, Cortex.

[107]  Ingo Kennerknecht,et al.  Prevalence of hereditary prosopagnosia (HPA) in Hong Kong Chinese population , 2008, American journal of medical genetics. Part A.

[108]  Thomas Serre,et al.  Fast ventral stream neural activity enables rapid visual categorization , 2015, NeuroImage.

[109]  Michael J. Tarr,et al.  Associative Processing Is Inherent in Scene Perception , 2015, PloS one.

[110]  M. Tarr,et al.  The Fusiform Face Area is Part of a Network that Processes Faces at the Individual Level , 2000, Journal of Cognitive Neuroscience.

[111]  D. Maurer,et al.  Development of spatial and temporal vision during childhood , 1999, Vision Research.

[112]  Kalanit Grill-Spector,et al.  The improbable simplicity of the fusiform face area , 2012, Trends in Cognitive Sciences.

[113]  Galia Avidan,et al.  Impossible expectations: fMRI adaptation in the lateral occipital complex (LOC) is modulated by the statistical regularities of 3D structural information , 2015, NeuroImage.

[114]  Justin L. Vincent,et al.  Novel domain formation reveals proto-architecture in inferotemporal cortex , 2014, Nature Neuroscience.

[115]  E. Renzi,et al.  Disorders of Visual Recognition , 2000 .

[116]  Matthias Niemeier,et al.  A contralateral preference in the lateral occipital area: sensory and attentional mechanisms. , 2004, Cerebral cortex.

[117]  Dominique Cardebat,et al.  Seeing, since childhood, without ventral stream: a behavioural study. , 2002, Brain : a journal of neurology.

[118]  Éva M. Bankó,et al.  ALTERED BOLD RESPONSE WITHIN THE CORE FACE-PROCESSING NETWORK IN CONGENITAL PROSOPAGNOSIA. , 2015, Ideggyogyaszati szemle.

[119]  W. K. Simmons,et al.  The Selectivity and Functional Connectivity of the Anterior Temporal Lobes , 2009, Cerebral cortex.

[120]  Rachel A Robbins,et al.  No childhood development of viewpoint-invariant face recognition: evidence from 8-year-olds and adults. , 2014, Journal of experimental child psychology.

[121]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[122]  D. Maurer,et al.  Gradual improvement in fine-grained sensitivity to triadic gaze after 6 years of age. , 2012, Journal of experimental child psychology.

[123]  Jia Liu,et al.  Neural decoding reveals impaired face configural processing in the right fusiform face area of individuals with developmental prosopagnosia. , 2015, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[124]  J. Haxby,et al.  The distributed human neural system for face perception , 2000, Trends in Cognitive Sciences.

[125]  Glyn W Humphreys,et al.  Features, objects, action: The cognitive neuropsychology of visual object processing, 1984–2004 , 2006, Cognitive neuropsychology.

[126]  L. Regolin,et al.  Spontaneous discrimination of possible and impossible objects by newly hatched chicks , 2011, Biology Letters.

[127]  L. Jakobson,et al.  A neurological dissociation between perceiving objects and grasping them , 1991, Nature.

[128]  Johannes Rüter,et al.  The Anatomy of Object Recognition—Visual Form Agnosia Caused by Medial Occipitotemporal Stroke , 2009, The Journal of Neuroscience.

[129]  Fulvio Domini,et al.  Spatial integration in structure from motion , 2004, Vision Research.

[130]  Roberta L. Klatzky,et al.  Ventral and Dorsal Visual Stream Contributions to the Perception of Object Shape and Object Location , 2014, Journal of Cognitive Neuroscience.

[131]  Alexander P. Leff,et al.  Too Little, Too Late: Reduced Visual Span and Speed Characterize Pure Alexia , 2009, Cerebral cortex.

[132]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[133]  David E. Osher,et al.  Tracking the Roots of Reading Ability: White Matter Volume and Integrity Correlate with Phonological Awareness in Prereading and Early-Reading Kindergarten Children , 2013, The Journal of Neuroscience.

[134]  Keiji Tanaka,et al.  Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. , 1994, Journal of neurophysiology.

[135]  A. Ishai,et al.  Effective connectivity within the distributed cortical network for face perception. , 2007, Cerebral cortex.

[136]  M. Tarr,et al.  Visual object recognition: do we know more now than we did 20 years ago? , 2007, Annual review of psychology.

[137]  Marlene Behrmann,et al.  Retinotopic information interacts with category selectivity in human ventral cortex , 2016, Neuropsychologia.

[138]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[139]  E. Rolls,et al.  View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. , 1998, Cerebral cortex.

[140]  D. Plaut,et al.  A LITERATURE REVIEW AND NEW DATA SUPPORTING AN INTERACTIVE ACCOUNT OF LETTER-BY-LETTER READING. , 1998, Cognitive neuropsychology.

[141]  Morris Moscovitch,et al.  Dissociation between mental imagery and object recognition in a brain-damaged patient , 1992, Nature.

[142]  Dwight J. Kravitz,et al.  A Retinotopic Basis for the Division of High-Level Scene Processing between Lateral and Ventral Human Occipitotemporal Cortex , 2015, The Journal of Neuroscience.

[143]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[144]  Brice A. Kuhl,et al.  Neural portraits of perception: Reconstructing face images from evoked brain activity , 2014, NeuroImage.

[145]  Denis Fize,et al.  Speed of processing in the human visual system , 1996, Nature.

[146]  G. Humphreys,et al.  A case of integrative visual agnosia. , 1987, Brain : a journal of neurology.

[147]  Julie M. Hupp,et al.  Object recognition and attention to object components by preschool children and 4-month-old infants. , 2003, Journal of experimental child psychology.

[148]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[149]  Nicholas Furl,et al.  Structural and effective connectivity reveals potential network-based influences on category-sensitive visual areas , 2015, Front. Hum. Neurosci..

[150]  Doris Y. Tsao,et al.  Functional Connectivity of the Macaque Brain across Stimulus and Arousal States , 2009, The Journal of Neuroscience.

[151]  J. Barton,et al.  The word-length effect in reading: A review , 2014, Cognitive neuropsychology.

[152]  B. de Gelder,et al.  Configural face processes in acquired and developmental prosopagnosia: evidence for two separate face systems? , 2000, Neuroreport.

[153]  Galia Avidan,et al.  Reduced structural connectivity in ventral visual cortex in congenital prosopagnosia , 2009, Nature Neuroscience.

[154]  Sherryse L. Corrow,et al.  Recognizing and identifying people: A neuropsychological review , 2016, Cortex.

[155]  Yaoda Xu,et al.  Decoding the content of visual short-term memory under distraction in occipital and parietal areas , 2015, Nature Neuroscience.

[156]  M. Bar Visual objects in context , 2004, Nature Reviews Neuroscience.

[157]  S. Valdois,et al.  Visual attention deficits in developmental dyslexia cannot be ascribed solely to poor reading experience , 2015, Nature Reviews Neuroscience.

[158]  Alumit Ishai,et al.  Let’s face it: It’s a cortical network , 2008, NeuroImage.

[159]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[160]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[161]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[162]  K. Nakayama,et al.  Please Scroll down for Article Cognitive Neuropsychology Family Resemblance: Ten Family Members with Prosopagnosia and Within-class Object Agnosia , 2022 .

[163]  S. Zeki,et al.  Parallel processing of face and house stimuli by V1 and specialized visual areas: a magnetoencephalographic (MEG) study , 2014, Front. Hum. Neurosci..

[164]  Nikolaus Kriegeskorte,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[165]  Beatriz Luna,et al.  Visual category-selectivity for faces, places and objects emerges along different developmental trajectories. , 2007, Developmental science.

[166]  J. Barton Structure and function in acquired prosopagnosia: lessons from a series of 10 patients with brain damage. , 2008, Journal of neuropsychology.

[167]  Daphne Maurer,et al.  A Window on the Normal Development of Sensitivity to Global Form in Glass Patterns , 2004, Perception.

[168]  Beatriz Luna,et al.  Cerebral Cortex doi:10.1093/cercor/bhq269 ‘‘What’ ’ Precedes ‘‘Which’’: Developmental Neural Tuning in Face- and Place-Related Cortex , 2011 .

[169]  Martin Jüttner,et al.  A developmental dissociation of view-dependent and view-invariant object recognition in adolescence , 2006, Behavioural Brain Research.

[170]  T. R. Jordan,et al.  Perception and action in 'visual form agnosia'. , 1991, Brain : a journal of neurology.

[171]  Ehud Zohary,et al.  Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. , 2007, Cerebral cortex.

[172]  Alan Cowey,et al.  On the usefulness of ‘what’ and ‘where’ pathways in vision , 2011, Trends in Cognitive Sciences.

[173]  Rafael Malach,et al.  Seeing with profoundly deactivated mid-level visual areas: non-hierarchical functioning in the human visual cortex. , 2009, Cerebral Cortex.

[174]  Nancy Kanwisher,et al.  Cerebral Cortex doi:10.1093/cercor/bhr357 Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location , 2011 .

[175]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[176]  D. Maurer,et al.  Neuroperception: Early visual experience and face processing , 2001, Nature.

[177]  A. Milner,et al.  Visuomotor performance in a patient with visual agnosia due to an early lesion. , 2004, Brain research. Cognitive brain research.

[178]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[179]  Isabel Gauthier,et al.  Visual Object Recognition: Do We (Finally) Know More Now Than We Did? , 2016, Annual review of vision science.

[180]  K. Grill-Spector,et al.  The functional architecture of the ventral temporal cortex and its role in categorization , 2014, Nature Reviews Neuroscience.

[181]  A. L. Navas,et al.  Phonological processing deficits as a universal model for dyslexia: evidence from different orthographies. , 2014, CoDAS.

[182]  M. Goodale,et al.  Ventral occipital lesions impair object recognition but not object-directed grasping: an fMRI study. , 2003, Brain : a journal of neurology.

[183]  Keiji Tanaka,et al.  Matching Categorical Object Representations in Inferior Temporal Cortex of Man and Monkey , 2008, Neuron.

[184]  C. Marra,et al.  Human Neuroscience , 2022 .

[185]  Galia Avidan,et al.  Functional dissociation between action and perception of object shape in developmental visual object agnosia , 2016, Cortex.

[186]  E. Warrington,et al.  Visual associative agnosia: a clinico-anatomical study of a single case. , 1986, Journal of neurology, neurosurgery, and psychiatry.

[187]  Marlene Behrmann,et al.  Emerging structure-function relations in the developing face processing system. , 2014, Cerebral cortex.

[188]  Nicole C Rust,et al.  Ambiguity and invariance: two fundamental challenges for visual processing , 2010, Current Opinion in Neurobiology.

[189]  Hiroshi Ban,et al.  fMRI Analysis-by-Synthesis Reveals a Dorsal Hierarchy That Extracts Surface Slant , 2015, The Journal of Neuroscience.

[190]  D. Maurer,et al.  Expert face processing requires visual input to the right hemisphere during infancy , 2003, Nature Neuroscience.

[191]  A. Torralba,et al.  The role of context in object recognition , 2007, Trends in Cognitive Sciences.

[192]  Marlene Behrmann,et al.  Bilateral hemispheric processing of words and faces: evidence from word impairments in prosopagnosia and face impairments in pure alexia. , 2014, Cerebral cortex.

[193]  B. Wandell,et al.  The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements , 2014, Proceedings of the National Academy of Sciences.

[194]  N. Kanwisher,et al.  The lateral occipital complex and its role in object recognition , 2001, Vision Research.

[195]  Daphne Maurer,et al.  Influence of intensity on children's sensitivity to happy, sad, and fearful facial expressions. , 2009, Journal of experimental child psychology.

[196]  J. DiCarlo,et al.  Comparison of Object Recognition Behavior in Human and Monkey , 2014, The Journal of Neuroscience.

[197]  C. Mash,et al.  Multidimensional shape similarity in the development of visual object classification. , 2006, Journal of experimental child psychology.

[198]  Simon J. Thorpe,et al.  Ultra-rapid object detection with saccadic eye movements: Visual processing speed revisited , 2006, Vision Research.

[199]  Ennio De Renzi,et al.  The Fuzzy Boundaries of Apperceptive Agnosia , 1993, Cortex.

[200]  D. Maurer,et al.  Repeated measurements of contrast sensitivity reveal limits to visual plasticity after early binocular deprivation in humans , 2006, Neuropsychologia.

[201]  I. Kennerknecht,et al.  Hereditary prosopagnosia (HPA): the first report outside the Caucasian population , 2006, Journal of Human Genetics.

[202]  S. Edelman,et al.  Differential Processing of Objects under Various Viewing Conditions in the Human Lateral Occipital Complex , 1999, Neuron.

[203]  Jan Drewes,et al.  Recurrent Processing in the Formation of Shape Percepts , 2016, The Journal of Neuroscience.