Magnetically Induced Anisotropic Interaction in Colloidal Assembly

[1]  A. Oldenburg,et al.  Magnetic Alignment for Plasmonic Control of Gold Nanorods Coated with Iron Oxide Nanoparticles , 2022, Advanced materials.

[2]  Jianguo Guan,et al.  Lipophilic Magnetic Photonic Nanochains for Practical Anticounterfeiting. , 2022, Small.

[3]  Jianguo Guan,et al.  Glucose‐Sensing Photonic Nanochain Probes with Color Change in Seconds , 2022, Advanced science.

[4]  Xiaohu Gao,et al.  Partial Magneto-Endosomalysis for Cytosolic Delivery of Antibodies. , 2022, Bioconjugate chemistry.

[5]  Huolin L. Xin,et al.  Multicolor Photonic Pigments for Rotation‐Asymmetric Mechanochromic Devices (Adv. Mater. 4/2022) , 2022, Advances in Materials.

[6]  J. Liu,et al.  Magnetic Nanoparticles: Synthesis, Anisotropy, and Applications. , 2021, Chemical reviews.

[7]  Yadong Yin,et al.  Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming , 2021, Science Robotics.

[8]  Yadong Yin,et al.  Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. , 2021, Chemical reviews.

[9]  Jianfang Wang,et al.  Gold Nanorods: The Most Versatile Plasmonic Nanoparticles. , 2021, Chemical reviews.

[10]  Chenhui Zhu,et al.  Coupling morphological and magnetic anisotropy for assembling tetragonal colloidal crystals , 2021, Science advances.

[11]  Zhiliang Zhang,et al.  Reconfigurable Mechanical Anisotropy in Self‐Assembled Magnetic Superstructures , 2021, Advanced science.

[12]  J. Liu,et al.  Extraordinary Magnetic Hardening in Nanowire Assemblies: the Geometry and Proximity Effects , 2021, Advanced Functional Materials.

[13]  Yadong Yin,et al.  Magnetically Tunable Plasmon Coupling of Au Nanoshells Enabled by Space-Free Confined Growth. , 2020, Nano letters.

[14]  A. Rogach,et al.  Metal Halide Perovskite Nanorods: Shape Matters , 2020, Advanced materials.

[15]  Yadong Yin,et al.  Colloidal Assembly and Active Tuning of Coupled Plasmonic Nanospheres , 2020 .

[16]  H. Mamiya,et al.  Estimation of Magnetic Anisotropy of Individual Magnetite Nanoparticles for Magnetic Hyperthermia. , 2020, ACS nano.

[17]  E. Ringe Shapes, Plasmonic Properties, and Reactivity of Magnesium Nanoparticles , 2020, The journal of physical chemistry. C, Nanomaterials and interfaces.

[18]  Yadong Yin,et al.  Coupling magnetic and plasmonic anisotropy in hybrid nanorods for mechanochromic responses , 2020, Nature Communications.

[19]  Zifeng Yan,et al.  Anisotropic plasmonic nanostructures for colorimetric sensing , 2020, Nano Today.

[20]  Huilin He,et al.  Linearly Polarized Emission from Shear-Induced Nematic Phase Upconversion Nanorods. , 2020, Nano letters.

[21]  H. Xin,et al.  Ligand-Assisted Solid-State Transformation of Nanoparticles , 2020 .

[22]  Xiaoliang Zhang,et al.  Dynamic Tuning of Optical Transmittance of 1D Colloidal Assemblies of Magnetic Nanostructures , 2019, Adv. Intell. Syst..

[23]  Zhiliang Zhang,et al.  Magnetically Enhanced Mechanical Stability and Super‐Size Effects in Self‐Assembled Superstructures of Nanocubes , 2019, Advanced Functional Materials.

[24]  Xiaoliang Zhang,et al.  Magnetic Assembly of Nanocubes for Orientation-Dependent Photonic Responses. , 2019, Nano letters.

[25]  Yadong Yin,et al.  Smart Materials by Nanoscale Magnetic Assembly , 2019, Advanced Functional Materials.

[26]  Lan Zhang,et al.  Coordination mode engineering in stacked-nanosheet metal–organic frameworks to enhance catalytic reactivity and structural robustness , 2019, Nature Communications.

[27]  C. Sangregorio,et al.  Precise Size Control of the Growth of Fe3O4 Nanocubes Over a Wide Size Range Using a Rationally Designed One-Pot Synthesis. , 2019, ACS nano.

[28]  Yadong Yin,et al.  Stimuli‐Responsive Optical Nanomaterials , 2019, Advanced materials.

[29]  S. Veintemillas-Verdaguer,et al.  Design strategies for shape‐controlled magnetic iron oxide nanoparticles , 2019, Advanced drug delivery reviews.

[30]  D. Peng,et al.  Tungsten hexacarbonyl-induced growth of nickel nanorods and nanocubes , 2018, Materials Letters.

[31]  Lin Zhou,et al.  Current progress and future challenges in rare-earth-free permanent magnets , 2018, Acta Materialia.

[32]  G. Yi,et al.  Transition of Dielectrophoresis-Assembled 2D Crystals to Interlocking Structures under a Magnetic Field. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[33]  Tobias A. F. König,et al.  Colloidal Self‐Assembly Concepts for Plasmonic Metasurfaces , 2018, Advanced Optical Materials.

[34]  Yang Cao,et al.  Enhanced photocatalytic degradation of tetracycline hydrochloride by novel porous hollow cube ZnFe2O4 , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[35]  Yadong Yin,et al.  Colloidal Assembly Approaches to Micro/Nanostructures of Complex Morphologies. , 2018, Small.

[36]  G. Yi,et al.  Monodisperse Magnetic Silica Hexapods. , 2018, Journal of the American Chemical Society.

[37]  Ruipeng Li,et al.  Formation of self-assembled gold nanoparticle supercrystals with facet-dependent surface plasmonic coupling , 2018, Nature Communications.

[38]  A. Mertelj,et al.  Anisotropic magnetic nanoparticles: A review of their properties, syntheses and potential applications , 2018, Progress in Materials Science.

[39]  Konstantin P. Skokov,et al.  Consolidation of cobalt nanorods: A new route for rare-earth free nanostructured permanent magnets , 2018 .

[40]  Seunghun Hong,et al.  Fourier Transform Surface Plasmon Resonance of Nanodisks Embedded in Magnetic Nanorods. , 2018, Nano letters.

[41]  Wenchen Ren,et al.  Magnetochromic Photonic Hydrogel for an Alternating Magnetic Field‐Responsive Color Display , 2018 .

[42]  Qian Song,et al.  Selective Surface Enhanced Raman Scattering for Quantitative Detection of Lung Cancer Biomarkers in Superparticle@MOF Structure , 2018, Advanced materials.

[43]  Jianguo Guan,et al.  Responsive Hydrogel-based Photonic Nanochains for Microenvironment Sensing and Imaging in Real Time and High Resolution. , 2018, Nano letters.

[44]  Jiawei Lv,et al.  Self-Assembly of Chiral Gold Clusters into Crystalline Nanocubes of Exceptional Optical Activity. , 2017, Angewandte Chemie.

[45]  M. A. Bevan,et al.  Effective colloidal interactions in rotating magnetic fields. , 2017, The Journal of chemical physics.

[46]  Valeria Lotito,et al.  Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. , 2017, Advances in colloid and interface science.

[47]  A. Alivisatos,et al.  Tolerance to structural disorder and tunable mechanical behavior in self-assembled superlattices of polymer-grafted nanocrystals , 2017, Proceedings of the National Academy of Sciences.

[48]  Jing Li,et al.  Structural, magnetic and electromagnetic properties of SrFe12O19 ferrite with particles aligned in a magnetic field , 2017 .

[49]  A. Samia,et al.  Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles , 2016 .

[50]  M. Engel,et al.  Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. , 2016, Chemical reviews.

[51]  Shouheng Sun,et al.  Organic Phase Syntheses of Magnetic Nanoparticles and Their Applications. , 2016, Chemical reviews.

[52]  A. Stierle,et al.  Organically linked iron oxide nanoparticle supercrystals with exceptional isotropic mechanical properties. , 2016, Nature materials.

[53]  Arthur F. Klittnick,et al.  Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates , 2015, Nature Communications.

[54]  E. Furlani,et al.  Self-Assembly of Crystalline Structures of Magnetic Core-Shell Nanoparticles for Fabrication of Nanostructured Materials. , 2015, ACS applied materials & interfaces.

[55]  M. Drofenik,et al.  Monolithic Magneto-Optical Nanocomposites of Barium Hexaferrite Platelets in PMMA , 2015, Scientific Reports.

[56]  Xin Wang,et al.  Magnetic assembly and field-tuning of ellipsoidal-nanoparticle-based colloidal photonic crystals. , 2015, Angewandte Chemie.

[57]  Taejong Paik,et al.  Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. , 2015, Journal of the American Chemical Society.

[58]  L. Bergström,et al.  Mesocrystals in Biominerals and Colloidal Arrays. , 2015, Accounts of chemical research.

[59]  Peng Wang,et al.  A Novel Magnetic Hydrogel with Aligned Magnetic Colloidal Assemblies Showing Controllable Enhancement of Magnetothermal Effect in the Presence of Alternating Magnetic Field , 2015, Advanced materials.

[60]  E. Furlani,et al.  Analysis of the Dynamics of Magnetic Core–Shell Nanoparticles and Self-Assembly of Crystalline Superstructures in Gradient Fields , 2015 .

[61]  Sung Chul Bae,et al.  Colloidal Superstructures Programmed into Magnetic Janus Particles , 2015, Advanced materials.

[62]  Jun Ding,et al.  Orientation Mediated Enhancement on Magnetic Hyperthermia of Fe3O4 Nanodisc , 2015 .

[63]  D. Di Carlo,et al.  Flexible and Stretchable Micromagnet Arrays for Tunable Biointerfacing , 2015, Advanced materials.

[64]  Shin‐Hyun Kim,et al.  Osmotic-Pressure-Mediated Control of Structural Colors of Photonic Capsules , 2015 .

[65]  Zhongze Gu,et al.  Spherical colloidal photonic crystals. , 2014, Accounts of chemical research.

[66]  Petr Král,et al.  Self-assembly of magnetite nanocubes into helical superstructures , 2014, Science.

[67]  Le He,et al.  Magnetically actuated liquid crystals. , 2014, Nano letters.

[68]  J. Liu,et al.  High Energy Product Developed from Cobalt Nanowires , 2014, Scientific Reports.

[69]  Hyunjoon Lee,et al.  Shaped Ni nanoparticles with an unconventional hcp crystalline structure. , 2014, Chemical communications.

[70]  Hao Zhong,et al.  Magnetically responsive photonic watermarks on banknotes , 2014 .

[71]  A. Ramazani,et al.  Fabrication of single crystalline, uniaxial single domain Co nanowire arrays with high coercivity , 2014 .

[72]  D. Baldomir,et al.  Multiplying Magnetic Hyperthermia Response by Nanoparticle Assembling , 2014 .

[73]  J. Gore,et al.  Iron-Loaded Magnetic Nanocapsules for pH-Triggered Drug Release and MRI Imaging , 2014, Chemistry of materials : a publication of the American Chemical Society.

[74]  Jianguo Guan,et al.  Steric‐Repulsion‐Based Magnetically Responsive Photonic Crystals , 2014, Advanced materials.

[75]  F. Boué,et al.  Optimization of the magnetic properties of aligned Co nanowires/polymer composites for the fabrication of permanent magnets , 2014, Journal of Nanoparticle Research.

[76]  Vinothan N Manoharan,et al.  Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules , 2014, Nature Communications.

[77]  Alexey Snezhko,et al.  Driving self-assembly and emergent dynamics in colloidal suspensions by time-dependent magnetic fields , 2013, Reports on progress in physics. Physical Society.

[78]  A. Snigirev,et al.  Self-assembly of colloidal hematite cubes: a microradian X-ray diffraction exploration of sedimentary crystals , 2013 .

[79]  Le He,et al.  Magnetic tuning of plasmonic excitation of gold nanorods. , 2013, Journal of the American Chemical Society.

[80]  Zhongze Gu,et al.  Microfluidic generation of magnetoresponsive Janus photonic crystal particles. , 2013, Nanoscale.

[81]  Mingsheng Wang,et al.  Magnetically rewritable photonic ink based on superparamagnetic nanochains , 2013 .

[82]  Z. Gu,et al.  Superparamagnetic Iron Oxide Nanoparticles as MRI contrast agents for Non-invasive Stem Cell Labeling and Tracking , 2013, Theranostics.

[83]  T. Cheng,et al.  One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters. , 2013, Nanoscale.

[84]  Le He,et al.  Magnetic field guided colloidal assembly , 2013 .

[85]  Jeremy Jones,et al.  Superparamagnetism , 2013, Radiopaedia.org.

[86]  Erik Luijten,et al.  Linking synchronization to self-assembly using magnetic Janus colloids , 2012, Nature.

[87]  F. Schoenstein,et al.  High temperature structural and magnetic properties of cobalt nanorods , 2012, 1208.4403.

[88]  A. Satoh,et al.  Structural Analysis of Self-Assembled Lattice Structures Composed of Cubic Hematite Particles , 2012 .

[89]  Q. Song,et al.  Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core-shell architecture. , 2012, Journal of the American Chemical Society.

[90]  Jian Tang,et al.  Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures , 2012 .

[91]  Mingsheng Wang,et al.  Magnetic assembly route to colloidal responsive photonic nanostructures. , 2012, Accounts of chemical research.

[92]  Stefano Sacanna,et al.  Magnetic click colloidal assembly. , 2012, Journal of the American Chemical Society.

[93]  S. Klapp,et al.  Percolation and orientational ordering in systems of magnetic nanorods , 2012, 1203.4707.

[94]  M. Toney,et al.  Synthesis, alignment, and magnetic properties of monodisperse nickel nanocubes. , 2012, Journal of the American Chemical Society.

[95]  Morteza Mahmoudi,et al.  Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. , 2011, Advances in colloid and interface science.

[96]  M. Morris,et al.  Microwave-assisted synthesis of icosahedral nickel nanocrystals , 2011 .

[97]  L. Bergström,et al.  Shape Induced Symmetry in Self-Assembled Mesocrystals of Iron Oxide Nanocubes , 2011, Nano letters.

[98]  Yadong Yin,et al.  Responsive photonic crystals. , 2011, Angewandte Chemie.

[99]  Bai Yang,et al.  Colloidal Self‐Assembly Meets Nanofabrication: From Two‐Dimensional Colloidal Crystals to Nanostructure Arrays , 2010, Advanced materials.

[100]  Christopher B. Murray,et al.  Binary nanocrystal superlattice membranes self-assembled at the liquid–air interface , 2010, Nature.

[101]  J. Vermant,et al.  Directed self-assembly of nanoparticles. , 2010, ACS nano.

[102]  R. Ma,et al.  Shape-Controlled Synthesis and Magnetic Properties of Monodisperse Fe3O4 Nanocubes , 2010 .

[103]  Jimmy C. Yu,et al.  Facile synthesis of size-controllable monodispersed ferrite nanospheres† , 2010 .

[104]  Wei Cheng,et al.  One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres , 2010 .

[105]  Le He,et al.  Rewritable Photonic Paper with Hygroscopic Salt Solution as Ink , 2009 .

[106]  S. Neeleshwar,et al.  Controlled Growth and Magnetic Property of FePt Nanostructure: Cuboctahedron, Octapod, Truncated Cube, and Cube , 2009 .

[107]  Stephanie H Lee,et al.  Anisotropic magnetic colloids: a strategy to form complex structures using nonspherical building blocks. , 2009, Small.

[108]  Howon Lee,et al.  SUPPLEMENTARY INFORMATION Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal , 2009 .

[109]  Jun Lin,et al.  A magnetic, luminescent and mesoporous core-shell structured composite material as drug carrier. , 2009, Biomaterials.

[110]  Dongyuan Zhao,et al.  Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. , 2009, Angewandte Chemie.

[111]  Howon Lee,et al.  Magnetochromatic microspheres: rotating photonic crystals. , 2009, Journal of the American Chemical Society.

[112]  Liming Shen,et al.  Formation Mechanism and Shape Control of Monodisperse Magnetic CoFe2O4 Nanocrystals , 2009 .

[113]  Juan de Vicente,et al.  Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[114]  Kai Song,et al.  Fabrication of 3D Photonic Crystals of Ellipsoids: Convective Self‐Assembly in Magnetic Field , 2009 .

[115]  F. Ott,et al.  Highly crystalline cobalt nanowires with high coercivity prepared by soft chemistry , 2009 .

[116]  Claire M. Cobley,et al.  Shape-Controlled Synthesis of Silver Nanoparticles for Plasmonic and Sensing Applications , 2009 .

[117]  Orlin D. Velev,et al.  Reconfigurable responsive structures assembled from magnetic Janus particles , 2009 .

[118]  X. Jiao,et al.  Solvothermal Synthesis and Characterization of Fe3O4 and γ-Fe2O3 Nanoplates , 2009 .

[119]  F. Ott,et al.  Effects of the shape of elongated magnetic particles on the coercive field , 2009 .

[120]  A. Falqui,et al.  Oriented magnetic nanowires with high coercivity , 2008 .

[121]  E. Snoeck,et al.  Magnetic configurations of 30 nm iron nanocubes studied by electron holography. , 2008, Nano letters.

[122]  Zheng Xu,et al.  Large-Scale Controlled Synthesis of FeCo Nanocubes and Microcages by Wet Chemistry , 2008 .

[123]  Shoji Maruo,et al.  Recent progress in multiphoton microfabrication , 2008 .

[124]  M. Lynch,et al.  Linear assemblies of magnetic nanoparticles as MRI contrast agents. , 2008, Journal of the American Chemical Society.

[125]  Haitao Yang,et al.  Synthesis and magnetic properties of monodisperse magnetite nanocubes , 2008 .

[126]  L. Liz‐Marzán,et al.  Synthesis and Characterization of Iron/Iron Oxide Core/Shell Nanocubes , 2007 .

[127]  Yasuhiro Sakamoto,et al.  Magnetic field-induced assembly of oriented superlattices from maghemite nanocubes , 2007, Proceedings of the National Academy of Sciences.

[128]  Yongxing Hu,et al.  Highly tunable superparamagnetic colloidal photonic crystals. , 2007, Angewandte Chemie.

[129]  L. Liz‐Marzán,et al.  Quasi‐Epitaxial Growth of Ni Nanoshells on Au Nanorods , 2007 .

[130]  H. Jaeger,et al.  Elastic membranes of close-packed nanoparticle arrays. , 2007, Nature materials.

[131]  Tierui Zhang,et al.  Superparamagnetic composite colloids with anisotropic structures. , 2007, Journal of the American Chemical Society.

[132]  Yadong Yin,et al.  Superparamagnetic magnetite colloidal nanocrystal clusters. , 2007, Angewandte Chemie.

[133]  Yaakov Kraftmakher,et al.  Magnetic field of a dipole and the dipole–dipole interaction , 2007 .

[134]  Sharon C. Glotzer,et al.  Simulation Study of Dipole-Induced Self-Assembly of Nanocubes , 2007 .

[135]  Shuhong Yu,et al.  Synthesis and Magnetic Properties of Uniform Hematite Nanocubes , 2007 .

[136]  A. Lu,et al.  Magnetic nanoparticles: synthesis, protection, functionalization, and application. , 2007, Angewandte Chemie.

[137]  Dmitri V Talapin,et al.  Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2 Te thin films. , 2007, Nature materials.

[138]  Hye Jin Chun,et al.  Magnetic anisotropy of vertically aligned α-Fe2O3 nanowire array , 2006 .

[139]  Hongyou Fan,et al.  Synthesis of FePt nanocubes and their oriented self-assembly. , 2006, Journal of the American Chemical Society.

[140]  A. Roy,et al.  Oriented self-assembly of cubic FePt nanoparticles , 2006 .

[141]  A. Ivanyi,et al.  Magnetic hysteresis under applied stress , 2006 .

[142]  Christopher B. Murray,et al.  Structural diversity in binary nanoparticle superlattices , 2006, Nature.

[143]  Jordi Sort,et al.  Exchange bias in nanostructures , 2005 .

[144]  Taeghwan Hyeon,et al.  Ultra-large-scale syntheses of monodisperse nanocrystals , 2004, Nature materials.

[145]  Z. J. Zhang,et al.  Effects of Interparticle Interactions upon the Magnetic Properties of CoFe2O4 and MnFe2O4 Nanocrystals , 2004 .

[146]  Shan X. Wang,et al.  Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. , 2004, Journal of the American Chemical Society.

[147]  Qianwang Chen,et al.  Growth of magnetite nanorods along its easy-magnetization axis of [1 1 0] , 2004 .

[148]  P. Fejes,et al.  Superlattices of Iron Nanocubes Synthesized from Fe[N(SiMe3)2]2 , 2004, Science.

[149]  Hao Zeng,et al.  Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. , 2004, Journal of the American Chemical Society.

[150]  L. Motte,et al.  Mesoscopic Structures of Nanocrystals: Collective Magnetic Properties Due to the Alignment of Nanocrystals , 2004 .

[151]  Yadong Yin,et al.  Template‐Assisted Self‐Assembly of Spherical Colloids into Complex and Controllable Structures , 2003 .

[152]  P. Zurcher,et al.  Unprecedented crystalline super-lattices of monodisperse cobalt nanorods. , 2003, Angewandte Chemie.

[153]  K.-S. Cho,et al.  Three-dimensional binary superlattices of magnetic nanocrystals and semiconductor quantum dots , 2003, Nature.

[154]  R. Skomski TOPICAL REVIEW: Nanomagnetics , 2003 .

[155]  Ulrike Woggon,et al.  Unidirectional Alignment of CdSe Nanorods , 2003 .

[156]  D. Sellmyer Applied physics: Strong magnets by self-assembly , 2002, Nature.

[157]  A. Alivisatos,et al.  Synthesis of hcp-Co Nanodisks. , 2002, Journal of the American Chemical Society.

[158]  Zhicheng Zhang,et al.  Fabrication and Characterization of the Plate-Shaped γ-Fe2O3 Nanocrystals , 2002 .

[159]  W. Haase,et al.  Rare-Earth-Containing Magnetic Liquid Crystals , 2000 .

[160]  K. Binnemans,et al.  Towards magnetic liquid crystals , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[161]  M. Farle Ferromagnetic resonance of ultrathin metallic layers , 1998 .

[162]  Martin Schadt,et al.  LIQUID CRYSTAL MATERIALS AND LIQUID CRYSTAL DISPLAYS , 1997 .

[163]  Hegeon Kwun,et al.  Effects of grain size, hardness, and stress on the magnetic hysteresis loops of ferromagnetic steels , 1987 .

[164]  P. Hartemann,et al.  Magnétostriction , 1980, Matériaux fonctionnels - Matériaux biosourcés.

[165]  K. Buschow,et al.  Intermetallic compounds of rare-earth and 3d transition metals , 1977 .

[166]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[167]  Li TaTsien,et al.  From phenomena of synchronization to exact synchronization and approximate synchronization for hyperbolic systems , 2016 .

[168]  Yongxing Hu,et al.  Magnetically responsive photonic nanochains. , 2011, Angewandte Chemie.

[169]  Jiye Fang,et al.  Superlattices with non-spherical building blocks , 2010 .

[170]  W. Kleemann,et al.  TOPICAL REVIEW: Supermagnetism , 2009 .

[171]  Roy H. Olsson,et al.  Microfabricated phononic crystal devices and applications , 2008 .

[172]  B. Chaudret,et al.  Synthesis of iron nanoparticles: Size effects, shape control and organisation , 2005 .

[173]  D. Larkman,et al.  Photonic crystals , 1999, International Conference on Transparent Optical Networks (Cat. No. 99EX350).

[174]  E. Lee,et al.  Magnetostriction and Magnetomechanical Effects , 1955 .