Digital Signatures with Quantum Candies

Quantum candies (qandies) is a pedagogical simple model which describes many concepts from quantum information processing (QIP) intuitively, without the need to understand or make use of superpositions, and without the need of using complex algebra. One of the topics in quantum cryptography which gains research attention in recent years is quantum digital signatures (QDS), involving protocols to securely sign classical bits using quantum methods. In this paper we show how the “qandy model” can be used to describe three QDS protocols, in order to provide an important and potentially practical example of the power of “superpositionless” quantum information processing, for individuals without background knowledge in the field.

[1]  Junan Lin,et al.  Quantum Candies and Quantum Cryptography , 2020, TPNC.

[2]  J. S. Shaari,et al.  Advances in Quantum Cryptography , 2019, 1906.01645.

[3]  Leslie Lamport,et al.  Constructing Digital Signatures from a One Way Function , 2016 .

[4]  Junan Lin,et al.  Illustrating quantum information with quantum candies , 2021, ArXiv.

[5]  David Chaum,et al.  Unconditionally Secure Digital Signatures , 1990, CRYPTO.

[6]  R. Amiri,et al.  Secure quantum signatures using insecure quantum channels , 2015, 1507.02975.

[7]  K. Svozil Staging quantum cryptography with chocolate balls , 2005, physics/0510050.

[8]  V. Dunjko,et al.  Quantum digital signatures with quantum-key-distribution components , 2014, 1403.5551.

[9]  Junji Shikata,et al.  Unconditionally Secure Digital Signature Schemes Admitting Transferability , 2000, ASIACRYPT.

[10]  R. Feynman Simulating physics with computers , 1999 .

[11]  S. Rajsbaum Foundations of Cryptography , 2014 .

[12]  Douglas R. Stinson,et al.  Unconditionally secure signature schemes revisited , 2016, J. Math. Cryptol..

[13]  Adam D. Smith,et al.  Authentication of quantum messages , 2001, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[14]  Erika Andersson,et al.  Unconditionally Secure Quantum Signatures , 2015, Entropy.

[15]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[16]  Erika Andersson,et al.  Minimum-cost quantum measurements for quantum information , 2014 .

[17]  Quantum Digital Signatures , 2001, quant-ph/0105032.

[18]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[19]  Erika Andersson,et al.  Quantum digital signatures without quantum memory. , 2013, Physical review letters.

[20]  Larry Carter,et al.  Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..

[21]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[22]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[23]  E. Andersson,et al.  Experimentally realizable quantum comparison of coherent states and its applications , 2006, quant-ph/0601130.

[24]  今井 浩 20世紀の名著名論:Peter Shor : Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 2004 .