Understanding metabolism with flux analysis: From theory to application.

[1]  D. Keech,et al.  Pyruvate carboxylase. , 2018, Current topics in cellular regulation.

[2]  Gretchen A. Stevens,et al.  A century of trends in adult human height , 2016, eLife.

[3]  J. Rabinowitz,et al.  Malic enzyme tracers reveal hypoxia-induced switch in adipocyte NADPH pathway usage. , 2016, Nature chemical biology.

[4]  Stephen L. Johnson,et al.  Exogenous Fatty Acids Are the Preferred Source of Membrane Lipids in Proliferating Fibroblasts. , 2016, Cell chemical biology.

[5]  Christian M. Metallo,et al.  Reductive carboxylation supports redox homeostasis during anchorage-independent growth , 2016, Nature.

[6]  S. Manalis,et al.  Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. , 2016, Developmental cell.

[7]  J. Locasale,et al.  The Warburg Effect: How Does it Benefit Cancer Cells? , 2016, Trends in biochemical sciences.

[8]  Prahlad T. Ram,et al.  Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism , 2016, eLife.

[9]  B. Faubert,et al.  Metabolic Heterogeneity in Human Lung Tumors , 2016, Cell.

[10]  Abhishek K. Jha,et al.  Environment Impacts the Metabolic Dependencies of Ras-Driven Non-Small Cell Lung Cancer. , 2016, Cell metabolism.

[11]  N. Pavlova,et al.  The Emerging Hallmarks of Cancer Metabolism. , 2016, Cell metabolism.

[12]  G. Cline,et al.  Integrated, Step-Wise, Mass-Isotopomeric Flux Analysis of the TCA Cycle. , 2015, Cell metabolism.

[13]  C. Maranas,et al.  13C metabolic flux analysis at a genome-scale. , 2015, Metabolic engineering.

[14]  R. Deberardinis,et al.  NRF2 regulates serine biosynthesis in non-small cell lung cancer , 2015, Nature Genetics.

[15]  Kristel Bernaerts,et al.  Multi-objective experimental design for (13)C-based metabolic flux analysis. , 2015, Mathematical biosciences.

[16]  Adam P. Arkin,et al.  A Method to Constrain Genome-Scale Models with 13C Labeling Data , 2015, PLoS Comput. Biol..

[17]  Joerg M. Buescher,et al.  A roadmap for interpreting (13)C metabolite labeling patterns from cells. , 2015, Current opinion in biotechnology.

[18]  W. Wiechert,et al.  How to measure metabolic fluxes: a taxonomic guide for (13)C fluxomics. , 2015, Current opinion in biotechnology.

[19]  Tomer Shlomi,et al.  Efficient Modeling of MS/MS Data for Metabolic Flux Analysis , 2015, PloS one.

[20]  Eytan Ruppin,et al.  Modeling cancer metabolism on a genome scale , 2015, Molecular systems biology.

[21]  A. Vazquez,et al.  Quantification of folate metabolism using transient metabolic flux analysis , 2015, Cancer & metabolism.

[22]  A. Lane,et al.  Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. , 2015, The Journal of clinical investigation.

[23]  J. Rabinowitz,et al.  Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate , 2014, Cancer & metabolism.

[24]  Eytan Ruppin,et al.  Phenotype-based cell-specific metabolic modeling reveals metabolic liabilities of cancer , 2014, eLife.

[25]  J. Locasale,et al.  Characterization of the usage of the serine metabolic network in human cancer. , 2014, Cell reports.

[26]  Mikhail S Shupletsov,et al.  OpenFLUX2: 13C-MFA modeling software package adjusted for the comprehensive analysis of single and parallel labeling experiments , 2014, Microbial Cell Factories.

[27]  Chao Li,et al.  CeCaFDB: a curated database for the documentation, visualization and comparative analysis of central carbon metabolic flux distributions explored by 13C-fluxomics , 2014, Nucleic Acids Res..

[28]  Jamey D. Young,et al.  Isotopically nonstationary 13C flux analysis of changes in Arabidopsis thaliana leaf metabolism due to high light acclimation , 2014, Proceedings of the National Academy of Sciences.

[29]  Lei Huang,et al.  Estimating Relative Changes of Metabolic Fluxes , 2014, PLoS Comput. Biol..

[30]  Yi Sun,et al.  Ribosomal protein S27-like is a physiological regulator of p53 that suppresses genomic instability and tumorigenesis , 2014, eLife.

[31]  Eugene V. Ryabov,et al.  MosaicSolver: a tool for determining recombinants of viral genomes from pileup data , 2014, Nucleic acids research.

[32]  H. Shimizu,et al.  OpenMebius: An Open Source Software for Isotopically Nonstationary 13C-Based Metabolic Flux Analysis , 2014, BioMed research international.

[33]  T. Shlomi,et al.  Quantitative flux analysis reveals folate-dependent NADPH production , 2014, Nature.

[34]  Avlant Nilsson,et al.  BioMet Toolbox 2.0: genome-wide analysis of metabolism and omics data , 2014, Nucleic Acids Res..

[35]  Jamey D. Young INCA: a computational platform for isotopically non-stationary metabolic flux analysis , 2014, Bioinform..

[36]  Adam M. Feist,et al.  Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. , 2014, Molecular cell.

[37]  J. Nielsen,et al.  Identification of anticancer drugs for hepatocellular carcinoma through personalized genome‐scale metabolic modeling , 2014, Molecular systems biology.

[38]  Jing Fan,et al.  Quantitation of cellular metabolic fluxes of methionine. , 2014, Analytical chemistry.

[39]  Tomer Shlomi,et al.  Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia , 2013, Molecular systems biology.

[40]  W. Wiechert,et al.  Isotopically non-stationary metabolic flux analysis: complex yet highly informative. , 2013, Current opinion in biotechnology.

[41]  U. Sauer,et al.  Non‐stationary 13C‐metabolic flux ratio analysis , 2013, Biotechnology and Bioengineering.

[42]  Maciek R Antoniewicz,et al.  13C metabolic flux analysis: optimal design of isotopic labeling experiments. , 2013, Current opinion in biotechnology.

[43]  Matthew G. Vander Heiden,et al.  Metabolic targets for cancer therapy , 2013, Nature Reviews Drug Discovery.

[44]  Brandon Barker,et al.  Computational approaches for understanding energy metabolism , 2013, Wiley interdisciplinary reviews. Systems biology and medicine.

[45]  J. Locasale Serine, glycine and one-carbon units: cancer metabolism in full circle , 2013, Nature Reviews Cancer.

[46]  Ronan M. T. Fleming,et al.  A community-driven global reconstruction of human metabolism , 2013, Nature Biotechnology.

[47]  Karsten Hiller,et al.  Profiling metabolic networks to study cancer metabolism. , 2013, Current opinion in biotechnology.

[48]  Karen Blyth,et al.  Serine starvation induces stress and p53 dependent metabolic remodeling in cancer cells , 2012, Nature.

[49]  Wolfgang Wiechert,et al.  13CFLUX2—high-performance software suite for 13C-metabolic flux analysis , 2012, Bioinform..

[50]  Gregory Stephanopoulos,et al.  Amplification of phosphoglycerate dehydrogenase diverts glycolytic flux and contributes to oncogenesis , 2012, BMC Proceedings.

[51]  V. Mootha,et al.  Metabolite Profiling Identifies a Key Role for Glycine in Rapid Cancer Cell Proliferation , 2012, Science.

[52]  M. Fukuda,et al.  Faculty Opinions recommendation of Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. , 2012 .

[53]  E. Heinzle,et al.  Isotope labeling experiments in metabolomics and fluxomics , 2012, Wiley interdisciplinary reviews. Systems biology and medicine.

[54]  Maciek R Antoniewicz,et al.  Selection of tracers for 13C-metabolic flux analysis using elementary metabolite units (EMU) basis vector methodology. , 2012, Metabolic engineering.

[55]  Jean-Charles Portais,et al.  Influx_s: Increasing Numerical Stability and Precision for Metabolic Flux Analysis in Isotope Labelling Experiments , 2012, Bioinform..

[56]  Jie Zhang,et al.  Optimization of 13C isotopic tracers for metabolic flux analysis in mammalian cells. , 2012, Metabolic engineering.

[57]  A. Lane,et al.  Glucose-independent glutamine metabolism via TCA cycling for proliferation and survival in B cells. , 2012, Cell metabolism.

[58]  Christian M. Metallo,et al.  Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia , 2011, Nature.

[59]  M. Antoniewicz,et al.  Dynamic metabolic flux analysis (DMFA): a framework for determining fluxes at metabolic non-steady state. , 2011, Metabolic engineering.

[60]  W. Marston Linehan,et al.  Reductive carboxylation supports growth in tumor cells with defective mitochondria , 2011, Nature.

[61]  Elmar Heinzle,et al.  Eukaryotic metabolism: Measuring compartment fluxes , 2011, Biotechnology journal.

[62]  C. Dang,et al.  Otto Warburg's contributions to current concepts of cancer metabolism , 2011, Nature Reviews Cancer.

[63]  E. Ruppin,et al.  Predicting selective drug targets in cancer through metabolic networks , 2011, Molecular systems biology.

[64]  R. Deberardinis,et al.  Pyruvate carboxylase is required for glutamine-independent growth of tumor cells , 2011, Proceedings of the National Academy of Sciences.

[65]  Chi V. Dang,et al.  Otto Warburg's contributions to current concepts of cancer metabolism , 2011, Nature Reviews Cancer.

[66]  Nicola Zamboni,et al.  13C metabolic flux analysis in complex systems. , 2011, Current opinion in biotechnology.

[67]  Intawat Nookaew,et al.  BioMet Toolbox: genome-wide analysis of metabolism , 2010, Nucleic Acids Res..

[68]  Gregory Stephanopoulos,et al.  Evaluation of 13C isotopic tracers for metabolic flux analysis in mammalian cells. , 2009, Journal of biotechnology.

[69]  Mark K Transtrum,et al.  Why are nonlinear fits to data so challenging? , 2009, Physical review letters.

[70]  U. Sauer,et al.  13C-based metabolic flux analysis , 2009, Nature Protocols.

[71]  L. Quek,et al.  OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis , 2009, Microbial cell factories.

[72]  U. Sauer,et al.  From biomarkers to integrated network responses , 2008, Nature Biotechnology.

[73]  Xiao-Jiang Feng,et al.  Systems-level metabolic flux profiling identifies fatty acid synthesis as a target for antiviral therapy , 2008, Nature Biotechnology.

[74]  C. Maranas,et al.  Identification of optimal measurement sets for complete flux elucidation in metabolic flux analysis experiments. , 2008, Biotechnology and bioengineering.

[75]  J. Rabinowitz,et al.  Kinetic flux profiling for quantitation of cellular metabolic fluxes , 2008, Nature Protocols.

[76]  Wolfgang Wiechert,et al.  13C labeling experiments at metabolic nonstationary conditions: An exploratory study , 2008, BMC Bioinformatics.

[77]  R. Deberardinis,et al.  Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis , 2007, Proceedings of the National Academy of Sciences.

[78]  J. Ohlrogge,et al.  Compartment-specific labeling information in 13C metabolic flux analysis of plants. , 2007, Phytochemistry.

[79]  J. L. Liu,et al.  Determination of metabolic fluxes in a non-steady-state system. , 2007, Phytochemistry.

[80]  K. S. Brown,et al.  Universally Sloppy Parameter Sensitivities in Systems Biology Models , 2007, PLoS Comput. Biol..

[81]  Visakan Kadirkamanathan,et al.  Markov Chain Monte Carlo Algorithm based metabolic flux distribution analysis on Corynebacterium glutamicum , 2006, Bioinform..

[82]  J. Rabinowitz,et al.  Kinetic flux profiling of nitrogen assimilation in Escherichia coli , 2006, Nature chemical biology.

[83]  Gregory Stephanopoulos,et al.  Determination of confidence intervals of metabolic fluxes estimated from stable isotope measurements. , 2006, Metabolic engineering.

[84]  Wolfgang Wiechert,et al.  Experimental design principles for isotopically instationary 13C labeling experiments , 2006, Biotechnology and bioengineering.

[85]  Juho Rousu,et al.  Planning optimal measurements of isotopomer distributions for estimation of metabolic fluxes , 2006, Bioinform..

[86]  S. Billings,et al.  Metabolic flux distribution analysis by 13C-tracer experiments using the Markov chain-Monte Carlo method. , 2005, Biochemical Society transactions.

[87]  Nicola Zamboni,et al.  FiatFlux – a software for metabolic flux analysis from 13C-glucose experiments , 2005, BMC Bioinformatics.

[88]  R. Gillies,et al.  Why do cancers have high aerobic glycolysis? , 2004, Nature Reviews Cancer.

[89]  Ganesh Sriram,et al.  Improvements in metabolic flux analysis using carbon bond labeling experiments: bondomer balancing and Boolean function mapping. , 2004, Metabolic engineering.

[90]  U. Sauer,et al.  Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. , 2003, European journal of biochemistry.

[91]  P. Verheijen,et al.  Cumulative bondomers: a new concept in flux analysis from 2D [13C,1H] COSY NMR data. , 2002, Biotechnology and bioengineering.

[92]  W Wiechert,et al.  A universal framework for 13C metabolic flux analysis. , 2001, Metabolic engineering.

[93]  W. Wiechert,et al.  Bidirectional reaction steps in metabolic networks: II. Flux estimation and statistical analysis. , 1997, Biotechnology and bioengineering.

[94]  W. Wiechert,et al.  Bidirectional reaction steps in metabolic networks: I. Modeling and simulation of carbon isotope labeling experiments. , 1997, Biotechnology and bioengineering.

[95]  T. Szyperski Biosynthetically directed fractional 13C-labeling of proteinogenic amino acids. An efficient analytical tool to investigate intermediary metabolism. , 1995, European journal of biochemistry.

[96]  Paul T. Boggs,et al.  Sequential Quadratic Programming , 1995, Acta Numerica.

[97]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[98]  O. Warburg [Origin of cancer cells]. , 1956, Oncologia.

[99]  Jean-Charles Portais,et al.  IsoDesign: a software for optimizing the design of 13C-metabolic flux analysis experiments. , 2014, Biotechnology and bioengineering.

[100]  Jamey D. Young,et al.  Isotopically nonstationary 13C flux analysis of Myc-induced metabolic reprogramming in B-cells. , 2013, Metabolic engineering.

[101]  이연수 Functional genomics reveal that the serine synthesis pathway is essential in breast cancer , 2011 .

[102]  B. Palsson,et al.  A protocol for generating a high-quality genome-scale metabolic reconstruction , 2010, Nature Protocols.

[103]  G. Stephanopoulos,et al.  Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions. , 2007, Metabolic engineering.

[104]  W. Eschbach Über den Stoffwechsel der Ektopie , 2005, Archiv für Gynäkologie.

[105]  W Wiechert,et al.  Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments. , 1999, Biotechnology and bioengineering.

[106]  W. Wiechert,et al.  Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems. , 1999, Biotechnology and bioengineering.

[107]  J. R.,et al.  Quantitative analysis , 1892, Nature.