Penalized regression via the restricted bridge estimator
暂无分享,去创建一个
[1] J. Friedman,et al. A Statistical View of Some Chemometrics Regression Tools , 1993 .
[2] M. Özkale. The relative efficiency of the restricted estimators in linear regression models , 2014 .
[3] Wenjiang J. Fu,et al. Asymptotics for lasso-type estimators , 2000 .
[4] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[5] R. R. Hocking,et al. Selection of the Best Subset in Regression Analysis , 1967 .
[6] A. E. Hoerl,et al. Ridge regression: biased estimation for nonorthogonal problems , 2000 .
[7] A. Saleh,et al. Rank theory approach to ridge, LASSO, preliminary test and Stein‐type estimators: A comparative study , 2018, Canadian Journal of Statistics.
[8] Preliminary test and Stein-type shrinkage LASSO-based estimators , 2018 .
[9] Andriëtte Bekker,et al. Preliminary testing of the Cobb–Douglas production function and related inferential issues , 2017, Commun. Stat. Simul. Comput..
[10] Xiaoming Yuan,et al. The flare package for high dimensional linear regression and precision matrix estimation in R , 2020, J. Mach. Learn. Res..
[11] D. Hunter,et al. Variable Selection using MM Algorithms. , 2005, Annals of statistics.
[12] Conrad Sanderson,et al. RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..
[13] Shalabh,et al. Linear Models and Generalizations: Least Squares and Alternatives , 2007 .
[14] V. Sheffield,et al. Regulation of gene expression in the mammalian eye and its relevance to eye disease , 2006, Proceedings of the National Academy of Sciences.
[15] Ehsan S. Soofi,et al. Effects of collinearity on information about regression coefficients , 1990 .
[16] Mahdi Roozbeh,et al. Shrinkage ridge estimators in semiparametric regression models , 2015, J. Multivar. Anal..
[17] R. Tibshirani,et al. The solution path of the generalized lasso , 2010, 1005.1971.
[18] Cheolwoo Park,et al. Bridge regression: Adaptivity and group selection , 2011 .
[19] Mahdi Roozbeh,et al. Robust ridge estimator in restricted semiparametric regression models , 2016, J. Multivar. Anal..
[20] S. Ejaz Ahmed,et al. Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation , 2013 .
[21] A. K. Md. Ehsanes Saleh,et al. Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study , 2018, Kybernetika.
[22] H. Zou,et al. One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.
[23] R. Tibshirani. Regression Shrinkage and Selection via the Lasso , 1996 .
[24] A. K. Md. Ehsanes Saleh,et al. Theory of preliminary test and Stein-type estimation with applications , 2006 .
[25] J. W. Gorman,et al. Selection of Variables for Fitting Equations to Data , 1966 .
[26] Victor J. Yohai,et al. Robust and sparse estimators for linear regression models , 2015, Comput. Stat. Data Anal..
[27] G. C. McDonald,et al. Instabilities of Regression Estimates Relating Air Pollution to Mortality , 1973 .
[28] P. Alam. ‘E’ , 2021, Composites Engineering: An A–Z Guide.
[29] Jianqing Fan,et al. Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .
[30] O. Arslan,et al. Variable Selection in Restricted Linear Regression Models , 2017, 1710.04105.
[31] Robert L. Mason,et al. A Comparison of Least Squares and Latent Root Regression Estimators , 1976 .
[32] Hu Yang,et al. On the Stein-Type Liu Estimator and Positive-Rule Stein-Type Liu Estimator in Multiple Linear Regression Models , 2012 .
[33] F. Don. Restrictions on variables , 1983 .
[34] Sreenivasa Rao Jammalamadaka,et al. Linear Models: An Integrated Approach , 2003 .
[35] I. Kohane,et al. Gene regulation and DNA damage in the ageing human brain , 2004, Nature.
[36] K. Strimmer,et al. Statistical Applications in Genetics and Molecular Biology High-Dimensional Regression and Variable Selection Using CAR Scores , 2011 .
[37] B. Yüzbaşı,et al. Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime , 2017, International Statistical Review.
[38] R. Tibshirani,et al. The Generalized Lasso Problem and Uniqueness , 2018, Electronic Journal of Statistics.