Penalized regression via the restricted bridge estimator

This article is concerned with the Bridge Regression, which is a special family in penalized regression with penalty function $\sum_{j=1}^{p}|\beta_j|^q$ with $q>0$, in a linear model with linear restrictions. The proposed restricted bridge (RBRIDGE) estimator simultaneously estimates parameters and selects important variables when a prior information about parameters are available in either low dimensional or high dimensional case. Using local quadratic approximation, the penalty term can be approximated around a local initial values vector and the RBRIDGE estimator enjoys a closed-form expression which can be solved when $q>0$. Special cases of our proposal are the restricted LASSO ($q=1$), restricted RIDGE ($q=2$), and restricted Elastic Net ($1< q < 2$) estimators. We provide some theoretical properties of the RBRIDGE estimator under for the low dimensional case, whereas the computational aspects are given for both low and high dimensional cases. An extensive Monte Carlo simulation study is conducted based on different prior pieces of information and the performance of the RBRIDGE estiamtor is compared with some competitive penalty estimators as well as the ORACLE. We also consider four real data examples analysis for comparison sake. The numerical results show that the suggested RBRIDGE estimator outperforms outstandingly when the prior is true or near exact

[1]  J. Friedman,et al.  A Statistical View of Some Chemometrics Regression Tools , 1993 .

[2]  M. Özkale The relative efficiency of the restricted estimators in linear regression models , 2014 .

[3]  Wenjiang J. Fu,et al.  Asymptotics for lasso-type estimators , 2000 .

[4]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[5]  R. R. Hocking,et al.  Selection of the Best Subset in Regression Analysis , 1967 .

[6]  A. E. Hoerl,et al.  Ridge regression: biased estimation for nonorthogonal problems , 2000 .

[7]  A. Saleh,et al.  Rank theory approach to ridge, LASSO, preliminary test and Stein‐type estimators: A comparative study , 2018, Canadian Journal of Statistics.

[8]  Preliminary test and Stein-type shrinkage LASSO-based estimators , 2018 .

[9]  Andriëtte Bekker,et al.  Preliminary testing of the Cobb–Douglas production function and related inferential issues , 2017, Commun. Stat. Simul. Comput..

[10]  Xiaoming Yuan,et al.  The flare package for high dimensional linear regression and precision matrix estimation in R , 2020, J. Mach. Learn. Res..

[11]  D. Hunter,et al.  Variable Selection using MM Algorithms. , 2005, Annals of statistics.

[12]  Conrad Sanderson,et al.  RcppArmadillo: Accelerating R with high-performance C++ linear algebra , 2014, Comput. Stat. Data Anal..

[13]  Shalabh,et al.  Linear Models and Generalizations: Least Squares and Alternatives , 2007 .

[14]  V. Sheffield,et al.  Regulation of gene expression in the mammalian eye and its relevance to eye disease , 2006, Proceedings of the National Academy of Sciences.

[15]  Ehsan S. Soofi,et al.  Effects of collinearity on information about regression coefficients , 1990 .

[16]  Mahdi Roozbeh,et al.  Shrinkage ridge estimators in semiparametric regression models , 2015, J. Multivar. Anal..

[17]  R. Tibshirani,et al.  The solution path of the generalized lasso , 2010, 1005.1971.

[18]  Cheolwoo Park,et al.  Bridge regression: Adaptivity and group selection , 2011 .

[19]  Mahdi Roozbeh,et al.  Robust ridge estimator in restricted semiparametric regression models , 2016, J. Multivar. Anal..

[20]  S. Ejaz Ahmed,et al.  Penalty, Shrinkage and Pretest Strategies: Variable Selection and Estimation , 2013 .

[21]  A. K. Md. Ehsanes Saleh,et al.  Rank theory approach to ridge, LASSO, preliminary test and Stein-type estimators: Comparative study , 2018, Kybernetika.

[22]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[23]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[24]  A. K. Md. Ehsanes Saleh,et al.  Theory of preliminary test and Stein-type estimation with applications , 2006 .

[25]  J. W. Gorman,et al.  Selection of Variables for Fitting Equations to Data , 1966 .

[26]  Victor J. Yohai,et al.  Robust and sparse estimators for linear regression models , 2015, Comput. Stat. Data Anal..

[27]  G. C. McDonald,et al.  Instabilities of Regression Estimates Relating Air Pollution to Mortality , 1973 .

[28]  P. Alam ‘E’ , 2021, Composites Engineering: An A–Z Guide.

[29]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[30]  O. Arslan,et al.  Variable Selection in Restricted Linear Regression Models , 2017, 1710.04105.

[31]  Robert L. Mason,et al.  A Comparison of Least Squares and Latent Root Regression Estimators , 1976 .

[32]  Hu Yang,et al.  On the Stein-Type Liu Estimator and Positive-Rule Stein-Type Liu Estimator in Multiple Linear Regression Models , 2012 .

[33]  F. Don Restrictions on variables , 1983 .

[34]  Sreenivasa Rao Jammalamadaka,et al.  Linear Models: An Integrated Approach , 2003 .

[35]  I. Kohane,et al.  Gene regulation and DNA damage in the ageing human brain , 2004, Nature.

[36]  K. Strimmer,et al.  Statistical Applications in Genetics and Molecular Biology High-Dimensional Regression and Variable Selection Using CAR Scores , 2011 .

[37]  B. Yüzbaşı,et al.  Shrinkage Estimation Strategies in Generalised Ridge Regression Models: Low/High‐Dimension Regime , 2017, International Statistical Review.

[38]  R. Tibshirani,et al.  The Generalized Lasso Problem and Uniqueness , 2018, Electronic Journal of Statistics.