Focus on the Rashba effect

The Rashba effect, discovered in 1959, continues to supply fertile ground for fundamental research and applications. It provided the basis for the proposal of the spin transistor by Datta and Das in 1990, which has largely inspired the broad and dynamic field of spintronics. More recent developments include new materials for the Rashba effect such as metal surfaces, interfaces and bulk materials. It has also given rise to new phenomena such as spin currents and the spin Hall effect, including its quantized version, which has led to the very active field of topological insulators. The Rashba effect plays a crucial role in yet more exotic fields of physics such as the search for Majorana fermions at semiconductor-superconductor interfaces and the interaction of ultracold atomic Bose and Fermi gases. Advances in our understanding of Rashba-type spin-orbit couplings, both qualitatively and quantitatively, can be obtained in many different ways. This focus issue brings together the wide range of research activities on Rashba physics to further promote the development of our physical pictures and concepts in this field. The present Editorial gives a brief account on the history of the Rashba effect including material that was previously not easily accessible before summarizing the key results of the present focus issue as a guidance to the reader.

[1]  Y. Tokura,et al.  Giant Rashba-type spin splitting in bulk BiTeI. , 2011, Nature materials.

[2]  E. Annese,et al.  Peculiar Rashba splitting originating from the two-dimensional symmetry of the surface. , 2009, Physical review letters.

[3]  D. Grundler,et al.  Alternative method for the quantitative determination of Rashba- and Dresselhaus spin–orbit interaction using the magnetization , 2013, 1306.3125.

[4]  J. Brand,et al.  Fragility of the fractional quantum spin Hall effect in quantum gases , 2013, 1310.7283.

[5]  G. Bihlmayer,et al.  Enhanced Rashba spin-orbit splitting in Bi ∕ Ag ( 111 ) and Pb ∕ Ag ( 111 ) surface alloys from first principles , 2007 .

[6]  J. G. Castle Paramagnetic Resonance Absorption in Graphite , 1953 .

[7]  S. Muff,et al.  Bulk and surface Rashba splitting in single termination BiTeCl , 2013 .

[8]  R. Casella Toroidal Energy Surfaces in Crystals with Wurtzite Symmetry , 1960 .

[9]  Saroj P. Dash,et al.  Silicon spintronics with ferromagnetic tunnel devices , 2012 .

[10]  A. Balocchi,et al.  Magnetic field effect on electron spin dynamics in (110) GaAs quantum wells , 2013, 1312.1807.

[11]  Rössler,et al.  Reduced g factor of subband Landau levels in AlGaAs/GaAs heterostructures. , 1985, Physical review. B, Condensed matter.

[12]  T. Sato,et al.  Rashba effect in antimony and bismuth studied by spin-resolved ARPES , 2014 .

[13]  R. Bell Electric Dipole Spin Transitions in InSb , 1962 .

[14]  S. Muff,et al.  Interband spin–orbit coupling between anti-parallel spin states in Pb quantum well states , 2013, 1306.0245.

[15]  Jacek K. Furdyna,et al.  Effects of Photon-Momentum and Magnetic-Field Reversal on the Far-Infrared Electric-Dipole Spin Resonance in InSb , 1983 .

[16]  K. Horn,et al.  Role of spin in quasiparticle interference. , 2004, Physical review letters.

[17]  Jensen,et al.  Spin Splitting of an Au(111) Surface State Band Observed with Angle Resolved Photoelectron Spectroscopy. , 1996, Physical review letters.

[18]  R. Winkler Rashba spin splitting in two-dimensional electron and hole systems , 2000, cond-mat/0002003.

[19]  C. Kane,et al.  Topological Insulators , 2019, Electromagnetic Anisotropy and Bianisotropy.

[20]  H. Mirhosseini,et al.  Ab initio spin-resolved photoemission and electron pair emission from a Dirac-type surface state in W(110) , 2013 .

[21]  G. Bihlmayer,et al.  Effect of structural modulation and thickness of a graphene overlayer on the binding energy of the Rashba-type surface state of Ir(111) , 2013 .

[22]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[23]  T. Skauli,et al.  Rashba spin splitting in a gated HgTe quantum well , 1996 .

[24]  R. Casella Symmetry of Wurtzite , 1959 .

[25]  K. Kern,et al.  Silicon surface with giant spin splitting. , 2009, Physical review letters.

[26]  Marvin L. Cohen,et al.  Band Structures and Pseudopotential Form Factors for Fourteen Semiconductors of the Diamond and Zinc-blende Structures , 1966 .

[27]  Tay-Rong Chang,et al.  Rashba effect within the space–charge layer of a semiconductor , 2014 .

[28]  D. Sokolovski,et al.  von Neumann spin measurements with Rashba fields , 2014, 1401.4551.

[29]  F. Reinert,et al.  Enhancing and reducing the Rashba-splitting at surfaces by adsorbates: Na and Xe on Bi/Cu(111) , 2013 .

[30]  C. Kittel,et al.  Spin-Orbit Interaction and the Effective Masses of Holes in Germanium , 1954 .

[31]  A. Gossard,et al.  Energy structure and quantized Hall effect of two-dimensional holes , 1983 .

[32]  E. Rashba,et al.  Properties of a 2D electron gas with lifted spectral degeneracy , 1984 .

[33]  B. Trauzettel,et al.  Addendum: Group theoretical and topological analysis of the quantum spin Hall effect in silicene , 2013, 1305.0766.

[34]  G. Bihlmayer,et al.  Giant Rashba splitting in graphene due to hybridization with gold , 2012, Nature Communications.

[35]  Quantized Surface States of a Narrow-Gap Semiconductor , 1974 .

[36]  E. J. Mele,et al.  Quantum spin Hall effect in graphene. , 2004, Physical review letters.

[37]  F. Zheng,et al.  Experimental evidence for spin-split bands in a one-dimensional chain structure. , 2006, Physical Review Letters.

[38]  G. Bihlmayer,et al.  Ir(111) surface state with giant Rashba splitting persists under graphene in air. , 2012, Physical review letters.

[39]  E. Krasovskii,et al.  Effect of spin–orbit coupling on atomic-like and delocalized quantum well states in Au overlayers on W(110) and Mo(110) , 2013 .

[40]  A. Shikin,et al.  Induced Rashba splitting of electronic states in monolayers of Au, Cu on a W(110) substrate , 2013 .

[41]  S. G. Bishop,et al.  Combined Resonance and Electron g Values in InSb , 1967 .

[42]  R. Hatch,et al.  Large tunable Rashba spin splitting of a two-dimensional electron gas in Bi2Se3. , 2011, Physical review letters.

[43]  Hideaki Takayanagi,et al.  Gate Control of Spin-Orbit Interaction in an Inverted In0 , 1997 .

[44]  G. Dresselhaus Spin-Orbit Coupling Effects in Zinc Blende Structures , 1955 .

[45]  H. Ebert,et al.  Exceptional behavior of d-like surface resonances on W(110): the one-step model in its density matrix formulation , 2014 .

[46]  T. K. Bergstresser,et al.  Electronic Structure and Optical Properties of Hexagonal CdSe, CdS, and ZnS , 1967 .

[47]  S. Hüfner,et al.  Direct measurements of the L -gap surface states on the (111) face of noble metals by photoelectron spectroscopy , 2001 .

[48]  X. Qi,et al.  Topological insulators and superconductors , 2010, 1008.2026.

[49]  G. Bihlmayer,et al.  The Rashba-effect at metallic surfaces , 2006 .

[50]  W. Gudat,et al.  Quantum cavity for spin due to spin-orbit interaction at a metal boundary. , 2008, Physical review letters.

[51]  R. Parmenter Symmetry Properties of the Energy Bands of the Zinc Blende Structure , 1955 .

[52]  K. Kern,et al.  Giant spin splitting through surface alloying. , 2007, Physical review letters.

[53]  Titus Neupert,et al.  Disentanglement of surface and bulk Rashba spin splittings in noncentrosymmetric BiTeI. , 2012, Physical review letters.

[54]  G. Dresselhaus,et al.  Cyclotron Resonance of Electrons and Holes in Silicon and Germanium Crystals , 1955 .

[55]  E. Rotenberg,et al.  Spin-resolved photoemission of surface states of W(110)-(1 x 1)H. , 2002, Physical review letters.

[56]  K. Kern,et al.  Combined large spin splitting and one-dimensional confinement in surface alloys , 2013, 1310.4277.

[57]  A. Aharony,et al.  Spin filtering in a Rashba–Dresselhaus–Aharonov–Bohm double-dot interferometer , 2013, 1307.0228.

[58]  H. Pu,et al.  Fulde–Ferrell pairing instability in spin–orbit coupled Fermi gas , 2013, 1302.1189.

[59]  R. J. Elliott,et al.  Spin-Orbit Coupling in Band Theory—Character Tables for Some "Double" Space Groups , 1954 .

[60]  M. Glasser Symmetry properties of the wurtzite structure , 1959 .

[61]  A. Balocchi,et al.  Electric field dependence of the spin relaxation anisotropy in (111) GaAs/AlGaAs quantum wells , 2013 .

[62]  G. Tatara,et al.  Rashba-induced spin electromagnetic fields in the strong sd coupling regime , 2013, 1308.0152.

[63]  H. Ebert,et al.  Rashba-type spin splitting at Au(111) beyond the Fermi level: the other part of the story , 2013 .

[64]  V. I. Grebennikov,et al.  Defect and structural imperfection effects on the electronic properties of BiTeI surfaces , 2014 .

[65]  E. Rashba,et al.  Oscillatory effects and the magnetic susceptibility of carriers in inversion layers , 1984 .

[66]  J. Dil Spin and angle resolved photoemission on non-magnetic low-dimensional systems , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[67]  K. Starke,et al.  Rashba effect at magnetic metal surfaces , 2005 .

[68]  Spin-dependent phenomena in semiconductors in strong electric fields , 2013, 1305.5680.

[69]  E. Chulkov,et al.  Rashba split surface states in BiTeBr , 2013, 1302.0704.

[70]  A. Bostwick,et al.  Giant ambipolar Rashba effect in the semiconductor BiTeI. , 2012, Physical review letters.

[71]  E. Rashba,et al.  Electric-Dipole Spin Resonances , 2018, 1812.01721.

[72]  E. Rotenberg,et al.  Spin-Orbit Coupling Induced Surface Band Splitting in Li/W(110) and Li/Mo(110) , 1999 .

[73]  K. Kokh,et al.  The gigantic Rashba effect of surface states energetically buried in the topological insulator Bi2Te2Se , 2014 .

[74]  H. Namatame,et al.  Spin-polarized Dirac-cone-like surface state with d character at W(110). , 2011, Physical review letters.

[75]  G. Bihlmayer,et al.  Rashba-type spin-orbit splitting of quantum well states in ultrathin Pb films. , 2008, Physical review letters.

[76]  S. Hasegawa,et al.  In situ transport measurements on ultrathin Bi(111) films using a magnetic tip: possible detection of current-induced spin polarization in the surface states , 2013 .

[77]  V. M. Edelstein Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems , 1990 .

[78]  J. Ortega,et al.  A chemically inert Rashba split interface electronic structure of C60, FeOEP and PTCDA on BiAg2/Ag(111) substrates , 2014 .

[79]  Hans Lüth,et al.  Experimental and theoretical approach to spin splitting in modulation-doped In{sub x}Ga{sub 1{minus}x}As/InP quantum wells for B{r_arrow}0 , 1997 .

[80]  Y. Yafet g Factors and Spin-Lattice Relaxation of Conduction Electrons , 1963 .

[81]  Fedor T. Vasko,et al.  Spin splitting in the spectrum of two-dimensional electrons due to the surface potential , 1979 .

[82]  M. Balkanski,et al.  Structure de bandes des cristaux de type wurtzite. Transitions optiques intrinsèques dans le CdS , 1960 .

[83]  L. Patthey,et al.  Spin structure of the Shockley surface state on Au(111) , 2004 .

[84]  P. Hedegård,et al.  A simple tight-binding model of spin–orbit splitting of sp-derived surface states , 2000 .

[85]  R. Arita,et al.  Emergence of non-centrosymmetric topological insulating phase in BiTeI under pressure , 2011, Nature Communications.