Small embedding characterizations for large cardinals
暂无分享,去创建一个
[1] Christoph Weiß. The combinatorial essence of supercompactness , 2012, Ann. Pure Appl. Log..
[2] Jouko Väänänen,et al. Reflection principles for the continuum , 2008 .
[3] Ralf Schindler. Proper forcing and remarkable cardinals , 2000, Bull. Symb. Log..
[4] Menachem Magidor. On the role of supercompact and extendible cardinals in logic , 1971 .
[5] Itay Neeman. Forcing with Sequences of Models of Two Types , 2014, Notre Dame J. Formal Log..
[6] Matteo Viale. Guessing models and generalized Laver diamond , 2012, Ann. Pure Appl. Log..
[7] C. Weiß. Subtle and Ineffable Tree Properties , 2010 .
[8] Victoria Gitman. Ramsey-like cardinals , 2011, J. Symb. Log..
[9] A. Kanamori. The Higher Infinite , 1994 .
[10] Kai Hauser. Indescribable Cardinals and Elementary Embeddings , 1991, J. Symb. Log..
[11] William S. Zwicker,et al. Flipping properties: A unifying thread in the theory of large cardinals , 1977 .
[12] M. Magidor. Combinatorial characterization of supercompact cardinals , 1974 .
[13] C. A. Johnson. Some partition relations for ideals on Pxλ , 1990 .
[14] William Mitchell,et al. Aronszajn trees and the independence of the transfer property , 1972 .
[15] Philipp Lucke,et al. Characterizing large cardinals through Neeman's pure side condition forcing , 2018, 1810.13209.
[16] M. Viale,et al. On the consistency strength of the proper forcing axiom , 2010, 1012.2046.
[17] Sy-David Friedman,et al. Subcompact cardinals, squares, and stationary reflection , 2011 .