A sub-threshold SRAM based PUF

The uniqueness and randomness of Physical Unclonable Functions (PUFs) allow secret keys to be stored in a tamper-proof package. In this paper, we propose a design for using a 65nm 10T sub-threshold Static Random Access Memory (SRAM) as a PUF. For this PUF, the challenge is the sub-threshold supply voltage and the response is the fingerprint obtained from the initial values of the cells when powered-up. In this design, we achieve significant improvements in power consumption and security over existing designs which makes it promising for low-power security applications.

[1]  Anantha Chandrakasan,et al.  Models of Process Variations in Device and Interconnect , 2001 .

[2]  A. Chandrakasan,et al.  Analyzing static noise margin for sub-threshold SRAM in 65nm CMOS , 2005, Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC 2005..

[3]  Rouwaida Kanj,et al.  Cross Layer Error Exploitation for Aggressive Voltage Scaling , 2007, 8th International Symposium on Quality Electronic Design (ISQED'07).

[4]  Adi Shamir,et al.  Remote Password Extraction from RFID Tags , 2007, IEEE Transactions on Computers.

[5]  A.P. Chandrakasan,et al.  A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation , 2007, IEEE Journal of Solid-State Circuits.

[6]  Jorge Guajardo,et al.  FPGA Intrinsic PUFs and Their Use for IP Protection , 2007, CHES.

[7]  E. Seevinck,et al.  Static-noise margin analysis of MOS SRAM cells , 1987 .

[8]  Jorge Guajardo,et al.  Extended abstract: The butterfly PUF protecting IP on every FPGA , 2008, 2008 IEEE International Workshop on Hardware-Oriented Security and Trust.

[9]  Stephen A. Benton,et al.  Physical one-way functions , 2001 .

[10]  Sani R. Nassif,et al.  Models of process variations in device and interconnect , 2000 .

[11]  Daniel E. Holcomb,et al.  Low-power sub-threshold design of secure physical unclonable functions , 2010, 2010 ACM/IEEE International Symposium on Low-Power Electronics and Design (ISLPED).

[12]  G. Edward Suh,et al.  Extracting secret keys from integrated circuits , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[13]  A.P. Chandrakasan,et al.  A 65 nm Sub-$V_{t}$ Microcontroller With Integrated SRAM and Switched Capacitor DC-DC Converter , 2008, IEEE Journal of Solid-State Circuits.

[14]  Kevin Fu,et al.  Vulnerabilities in First-Generation RFID-Enabled Credit Cards , 2007, Financial Cryptography.

[15]  G. Edward Suh,et al.  Physical Unclonable Functions for Device Authentication and Secret Key Generation , 2007, 2007 44th ACM/IEEE Design Automation Conference.

[16]  A. Chandrakasan,et al.  A 180mV FFT processor using subthreshold circuit techniques , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[17]  S. Shimada,et al.  Low-power embedded SRAM modules with expanded margins for writing , 2005, ISSCC. 2005 IEEE International Digest of Technical Papers. Solid-State Circuits Conference, 2005..

[18]  Srinivas Devadas,et al.  Silicon physical random functions , 2002, CCS '02.

[19]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[20]  Daniel E. Holcomb,et al.  Power-Up SRAM State as an Identifying Fingerprint and Source of True Random Numbers , 2009, IEEE Transactions on Computers.

[21]  A. Wang,et al.  Modeling and sizing for minimum energy operation in subthreshold circuits , 2005, IEEE Journal of Solid-State Circuits.