Liquid-jet laser–plasma extreme ultraviolet sources: from droplets to filaments

The laser plasma is one of the major contenders as a high-power source for future high-volume-manufacturing extreme ultraviolet lithography systems. Such laser-plasma sources require a target system that allows high-repetition-rate operation with low debris and manageable thermal load at the required high laser power. In this paper, we review the development of the liquid-jet target laser plasmas, from droplets to filaments, with special emphasis on its applicability for high-power extreme ultraviolet generation. We focus on two target systems, the liquid-xenon-jet and the liquid-tin-jet.

[1]  Kevin D. Krenz,et al.  High-power extreme-ultraviolet source based on gas jets , 1998, Advanced Lithography.

[2]  Andrzej Bartnik,et al.  X‐ray emission from laser‐irradiated gas puff targets , 1993 .

[3]  D. Attwood Soft X-Rays and Extreme Ultraviolet Radiation , 1999 .

[4]  C. Weber Zum Zerfall eines Flüssigkeitsstrahles , 1931 .

[5]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[6]  Marek Wieland,et al.  Scaling-up a liquid water jet laser plasma source to high average power for extreme-ultraviolet lithography , 2001, SPIE Advanced Lithography.

[7]  Issues of laser plasma sources for soft x-ray projection lithography , 1994 .

[8]  Hans M. Hertz,et al.  Liquid-jet target for laser-plasma soft x-ray generation , 1996 .

[9]  Randall J. St. Pierre,et al.  Laser-produced plasma (LPP) scale-up and commercialization , 2001, SPIE Advanced Lithography.

[10]  Hans M. Hertz,et al.  Xenon liquid-jet laser plasma source for EUV lithography , 2000, Advanced Lithography.

[11]  R. Fedosejevs,et al.  Particle emission debris from a KrF laser–plasma x‐ray source , 1996 .

[12]  Hans M. Hertz,et al.  Liquid-tin-jet laser-plasma extreme ultraviolet generation , 2004 .

[13]  B. Trostell Vacuum injection of hydrogen micro-sphere beams , 1995 .

[14]  Hans M. Hertz,et al.  Cryogenic liquid-jet target for debris-free laser-plasma soft x-ray generation , 1998 .

[15]  Luk,et al.  Multiphoton induced x-ray emission from Kr clusters on M-shell (~100 Å) and L-shell (~6 Å) transitions. , 1994, Physical Review Letters.

[16]  Hans M. Hertz,et al.  Liquid-metal-jet anode electron-impact x-ray source , 2003 .

[17]  R. Sigel,et al.  A Continuous Droplet Source for Plasma Production with Pulse Lasers , 1974 .

[18]  Hans M. Hertz,et al.  Target analysis of laser plasma droplet-target system , 2000, SPIE Optics + Photonics.

[19]  Hans M. Hertz,et al.  Characterization of a liquid-xenon-jet laser-plasma extreme-ultraviolet source , 2004 .

[20]  Klapisch,et al.  Interpretation of the quasicontinuum band emitted by highly ionized rare-earth elements in the 70-100-Å range. , 1987, Physical review. A, General physics.

[21]  Martin Richardson,et al.  Repeller field debris mitigation approach for EUV sources , 2003, SPIE Advanced Lithography.

[22]  Hans M. Hertz,et al.  Debris-free soft x-ray generation using a liquid droplet laser-plasma target , 1995, Optics & Photonics.

[23]  David R. Klug,et al.  5–20 keV laser-induced x-ray generation at 1 kHz from a liquid-jet target , 1998 .

[24]  L. Rayleigh On The Instability Of Jets , 1878 .

[25]  Thomas Wilhein,et al.  EUV and fast ion emission from cryogenic liquid jet target laser-generated plasma , 2001 .

[26]  Hans M. Hertz,et al.  Liquid-xenon-jet laser-plasma source for EUV lithography , 2001, SPIE Optics + Photonics.

[27]  M. Richardson,et al.  Mass-limited, debris-free laser-plasma EUV source , 1998 .

[28]  Hiroyuki Daido,et al.  Soft x‐ray spectra of highly ionized elements with atomic numbers ranging from 57 to 82 produced by compact lasers , 1994 .

[29]  Martin Antoni,et al.  Illumination optics design for EUV lithography , 2000, SPIE Optics + Photonics.

[30]  G. O'Sullivan,et al.  Ground-state configurations of ionic species I through XVI for Z=57-74 and the interpretation of 4d-4f emission resonances in laser-produced plasmas , 1982 .

[31]  Eric M. Gullikson,et al.  Lifetime studies of Mo/Si and Mo/Be multilayer coatings for extreme ultraviolet lithography , 1999, Optics & Photonics.

[32]  Yoshifumi Ueno,et al.  Experimental evaluation of a stopping power of high-energy ions from a laser-produced plasma by a magnetic field , 2003, SPIE Advanced Lithography.

[33]  M. Berglund,et al.  Stabilization of liquified-inert-gas jets for laser-plasma generation , 2004 .

[34]  H. Hertz,et al.  Microscopic high-speed liquid-metal jets in vacuum , 2005 .

[35]  Bjoern A. M. Hansson,et al.  A liquid-xenon-jet laser-plasma x-ray and EUV source , 2000 .

[36]  R. Stuik,et al.  Portable diagnostics for EUV light sources , 2000, SPIE Optics + Photonics.

[37]  Hans M. Hertz,et al.  Droplet target for low-debris laser-plasma soft X-ray generation , 1993 .

[38]  Petra Hegeman,et al.  Laser-generated water plasma source for extreme-ultraviolet lithography and at-wavelength interferometry , 2000, SPIE Optics + Photonics.

[39]  Wolfgang Singer,et al.  Collection efficiency of EUV sources , 2003, SPIE Advanced Lithography.

[40]  C. A. Foster,et al.  Hollow hydrogen spheres for laser‐fusion targets , 1975 .

[41]  Harry Rieger,et al.  High-conversion-efficiency tin material laser-plasma source for EUVL , 2003, SPIE Advanced Lithography.

[42]  Koichi Toyoda,et al.  Performance of a 10-kHz laser-produced-plasma light source for EUV lithography , 2004, SPIE Advanced Lithography.

[43]  M. Ginter,et al.  Debris and VUV emission from a laser-produced plasma operated at 150 Hz using a krypton fluoride laser. , 1988, Applied optics.

[44]  H. M. Hertz,et al.  Debris elimination in a droplet‐target laser‐plasma soft x‐ray source , 1995 .

[45]  Michael E. Malinowski,et al.  Use of molecular oxygen to reduce EUV-induced carbon contamination of optics , 2001, SPIE Advanced Lithography.

[46]  C. A. Foster,et al.  Apparatus for producing uniform solid spheres of hydrogen , 1977 .

[47]  Igor V. Fomenkov,et al.  Performance and scaling of a dense plasma focus light source for EUV lithography , 2003, SPIE Advanced Lithography.

[48]  Randall J. St. Pierre,et al.  Xenon target performance characteristics for laser-produced plasma EUV sources , 2002, SPIE Advanced Lithography.

[49]  Johan Wallin,et al.  Status of the liquid-xenon-jet laser-plasma source for EUV lithography , 2002, SPIE Advanced Lithography.

[50]  Svendsen,et al.  Statistics and characteristics of xuv transition arrays from laser-produced plasmas of the elements tin through iodine. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[51]  W. M. Clift,et al.  Radiation-induced protective carbon coating for extreme ultraviolet optics , 2002 .

[52]  Hans M. Hertz,et al.  Debris-free Single-line Laser-plasma X-ray Source For Microscopy , 1995 .

[53]  R. Reitz,et al.  DROP AND SPRAY FORMATION FROM A LIQUID JET , 1998 .

[54]  W. Jark,et al.  Investigation of carbon contamination of mirror surfaces exposed to synchrotron radiation , 1983 .

[56]  Andrzej Bartnik,et al.  Generation of nanosecond soft X-ray pulses as a result of interaction of the Nd: glass laser radiation with gas puff targets , 1994 .

[57]  Roel Moors,et al.  Relationship between an EUV source and the performance of an EUV lithographic system , 2000, Advanced Lithography.

[58]  Hans M. Hertz,et al.  X-ray and EUV laser-plasma sources based on cryogenic liquid-jet target , 1999, Advanced Lithography.

[59]  Regina Soufli,et al.  Controlling contamination in Mo/Si multilayer mirrors by Si surface capping modifications , 2002, SPIE Advanced Lithography.