Second-Order Online Nonconvex Optimization

We present the online Newton's method, a single-step second-order method for online nonconvex optimization. We analyze its performance and obtain a dynamic regret bound that is linear in the cumulative variation between round optima. We show that if the variation between round optima is limited, the method leads to a constant regret bound. In the general case, the online Newton's method outperforms online convex optimization algorithms for convex functions and performs similarly to a specialized algorithm for strongly convex functions. We simulate the performance of the online Newton's method on a nonlinear, nonconvex moving target localization example and find that it outperforms a first-order approach.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Duncan S. Callaway,et al.  Arbitraging Intraday Wholesale Energy Market Prices With Aggregations of Thermostatic Loads , 2015, IEEE Transactions on Power Systems.

[3]  Xiaobo Li,et al.  Online Learning with Non-Convex Losses and Non-Stationary Regret , 2018, AISTATS.

[4]  Duncan S. Callaway,et al.  State Estimation and Control of Electric Loads to Manage Real-Time Energy Imbalance , 2013, IEEE Transactions on Power Systems.

[5]  Ian A. Hiskens,et al.  Achieving Controllability of Electric Loads , 2011, Proceedings of the IEEE.

[6]  Elad Hazan,et al.  Introduction to Online Convex Optimization , 2016, Found. Trends Optim..

[7]  Hao Yu,et al.  Online Convex Optimization with Time-Varying Constraints , 2017, 1702.04783.

[8]  Lijun Chen,et al.  Online Stochastic Optimization of Networked Distributed Energy Resources , 2020, IEEE Transactions on Automatic Control.

[9]  R. Faure,et al.  Introduction to operations research , 1968 .

[10]  Na Li,et al.  Online Optimization With Predictions and Switching Costs: Fast Algorithms and the Fundamental Limit , 2018, IEEE Transactions on Automatic Control.

[11]  Aryan Mokhtari,et al.  A Class of Prediction-Correction Methods for Time-Varying Convex Optimization , 2015, IEEE Transactions on Signal Processing.

[12]  Ketan Rajawat,et al.  Online Learning With Inexact Proximal Online Gradient Descent Algorithms , 2018, IEEE Transactions on Signal Processing.

[13]  Karthik Sridharan,et al.  Online Learning with Predictable Sequences , 2012, COLT.

[14]  Ji Liu,et al.  Proximal Online Gradient Is Optimum for Dynamic Regret: A General Lower Bound , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[15]  Jinfeng Yi,et al.  Tracking Slowly Moving Clairvoyant: Optimal Dynamic Regret of Online Learning with True and Noisy Gradient , 2016, ICML.

[16]  Gábor Lugosi,et al.  Regret in Online Combinatorial Optimization , 2012, Math. Oper. Res..

[17]  Georgios B. Giannakis,et al.  An Online Convex Optimization Approach to Real-Time Energy Pricing for Demand Response , 2017, IEEE Transactions on Smart Grid.

[18]  Stephen P. Boyd,et al.  CVXPY: A Python-Embedded Modeling Language for Convex Optimization , 2016, J. Mach. Learn. Res..

[19]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[20]  Krishnamurthy Dvijotham,et al.  Real-Time Optimal Power Flow , 2017, IEEE Transactions on Smart Grid.

[21]  Andrey Bernstein,et al.  A Feedback-Based Regularized Primal-Dual Gradient Method for Time-Varying Nonconvex Optimization , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[22]  Francis Bach,et al.  Submodular functions: from discrete to continuous domains , 2015, Mathematical Programming.

[23]  Jinfeng Yi,et al.  Improved Dynamic Regret for Non-degenerate Functions , 2016, NIPS.

[24]  Sean P. Meyn,et al.  Ancillary Service to the Grid Through Control of Fans in Commercial Building HVAC Systems , 2014, IEEE Transactions on Smart Grid.

[25]  Aryan Mokhtari,et al.  Optimization in Dynamic Environments : Improved Regret Rates for Strongly Convex Problems , 2016 .

[26]  Duncan S. Callaway Tapping the energy storage potential in electric loads to deliver load following and regulation, with application to wind energy , 2009 .

[27]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[28]  Qing Ling,et al.  An Online Convex Optimization Approach to Proactive Network Resource Allocation , 2017, IEEE Transactions on Signal Processing.

[29]  Antoine Lesage-Landry,et al.  Setpoint Tracking With Partially Observed Loads , 2017, IEEE Transactions on Power Systems.

[30]  Elad Hazan,et al.  Logarithmic regret algorithms for online convex optimization , 2006, Machine Learning.

[31]  Ambuj Tewari,et al.  Composite objective mirror descent , 2010, COLT 2010.

[32]  Brian D. O. Anderson,et al.  Sensor network localization with imprecise distances , 2006, Syst. Control. Lett..

[33]  H. Vincent Poor,et al.  A Virtual-Queue-Based Algorithm for Constrained Online Convex Optimization With Applications to Data Center Resource Allocation , 2018, IEEE Journal of Selected Topics in Signal Processing.

[34]  Shai Shalev-Shwartz,et al.  Online Learning and Online Convex Optimization , 2012, Found. Trends Mach. Learn..

[35]  Taskin Koçak,et al.  A Survey on Smart Grid Potential Applications and Communication Requirements , 2013, IEEE Transactions on Industrial Informatics.

[36]  Andrey Bernstein,et al.  Online Primal-Dual Methods With Measurement Feedback for Time-Varying Convex Optimization , 2018, IEEE Transactions on Signal Processing.

[37]  Pierluigi Mancarella,et al.  Online Convex Optimization of Multi-Energy Building-to-Grid Ancillary Services , 2020, IEEE Transactions on Control Systems Technology.

[38]  Antoine Lesage-Landry,et al.  Predictive Online Convex Optimization , 2019, Autom..

[39]  Sairaj V. Dhople,et al.  Power Systems Without Fuel , 2015, ArXiv.

[40]  Andrey Bernstein,et al.  Real-Time Minimization of Average Error in the Presence of Uncertainty and Convexification of Feasible Sets , 2016, ArXiv.

[41]  Andrey Bernstein,et al.  Real-Time Feedback-Based Optimization of Distribution Grids: A Unified Approach , 2017, IEEE Transactions on Control of Network Systems.

[42]  R. Tyrrell Rockafellar,et al.  An Euler-Newton Continuation Method for Tracking Solution Trajectories of Parametric Variational Inequalities , 2013, SIAM J. Control. Optim..

[43]  Shahin Shahrampour,et al.  Distributed Online Optimization in Dynamic Environments Using Mirror Descent , 2016, IEEE Transactions on Automatic Control.

[44]  A. Zeevi,et al.  Non-Stationary Stochastic Optimization , 2014 .

[45]  Elad Hazan,et al.  Online submodular minimization , 2009, J. Mach. Learn. Res..

[46]  Ketan Rajawat,et al.  Tracking Moving Agents via Inexact Online Gradient Descent Algorithm , 2017, IEEE Journal of Selected Topics in Signal Processing.

[47]  Victor M. Zavala,et al.  Real-Time Nonlinear Optimization as a Generalized Equation , 2010, SIAM J. Control. Optim..

[48]  Ufuk Topcu,et al.  Distributed Charging Control of Electric Vehicles Using Online Learning , 2015, IEEE Transactions on Automatic Control.

[49]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .

[50]  Martin Zinkevich,et al.  Online Convex Programming and Generalized Infinitesimal Gradient Ascent , 2003, ICML.

[51]  Shahin Shahrampour,et al.  Online Optimization : Competing with Dynamic Comparators , 2015, AISTATS.

[52]  Rachel Cummings,et al.  Differentially Private Online Submodular Optimization , 2018, AISTATS.

[53]  Jeff A. Bilmes,et al.  Online Submodular Minimization for Combinatorial Structures , 2011, ICML.

[54]  Alejandro Ribeiro,et al.  Online Learning of Feasible Strategies in Unknown Environments , 2016, IEEE Transactions on Automatic Control.

[55]  Sébastien Bubeck,et al.  Introduction to Online Optimization , 2011 .

[56]  Rebecca Willett,et al.  Online Convex Optimization in Dynamic Environments , 2015, IEEE Journal of Selected Topics in Signal Processing.

[57]  Karan Singh,et al.  Efficient Regret Minimization in Non-Convex Games , 2017, ICML.