A nonlinear analysis of infinitely long graphite-epoxy cylindrical panels loaded with internal pressure

The structural response of internally pressurized composite cylindrical panels, representative of a transport aircraft's fuselage skins, is predicted by means of a one-dimensional, geometrically nonlinear analysis. An analytical study is conducted for the response of 4-, 8-, and 16-ply graphite/epoxy skins. The results obtained indicate that the response is geometrically nonlinear, and that a boundary layer with a severe bending gradient exists at the panel edges. The importance of through-the-thickness shearing deformations in the bending boundary layer is illustrated through comparison of analyses based on Kirchhoff-Love and shear deformation theories. Numerical results for the bending boundary layer lengths of the different panels are presented, and two bending boundary layers are predicted with the shear deformation theory.